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Preface

In 2011 during my Ph.D. study I changed my research topic and started

to work in the area of mobile operating system security. At that time a

promising open-source mobile operating system called Android has been

conquering the world. Due to its openness it has quickly become a reference

testbed for researchers exploring mobile operating systems. During the last

several years hundreds of research papers has been appearing only in the

area of the security of this operating system. Thus, not surprisingly that

we also selected the Android OS as a reference platform for our research.

Unfortunately, at the time when I started to work with this operating

system and even three years after the information about this operating

system is sparse and scattered around different resources. This does not

concern Android application programming – during the last several years

lots of books and web resources appeared describing the process and best

practices how to develop Android apps. Moreover, the official documen-

tation about app programming is quite complete and a credible source of

information on that topic. On the contrary, the official documentation

about system programming is pure and gives you good insights only how

to download the Android sources and build them. Additional information

covers only part of the topics and do not provide you the whole picture.

The situation in case of security is even more dismal. Luckily, recently a

few sources of valuable information on this topic appeared that flash light

on the shadows. The book “Embedded Android” [19] by Karim Yaghmour,

the presentations about Android internals by Aleksandar and Marko Gar-

genta and other resources (often referenced in this work) begin to stick

together the puzzles in my mind how the Android system operates.

Despite the presence of these information sources, I still feel the lack

of deep information on how the security of Android works. To me, it is

interesting not the high-level words about system’s operating but deep-dive

consideration of particular security features with code examples forming
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big picture of the security procurement in the Android operating system.

During the time of Ph.D. thesis writing I decided to collect all bits and

pieces on the topic and put them together as a part of my thesis [20]. Ba-

sically, I consider this book as the continuation of the work, which first

version is appeared in my Ph.D. dissertation. So as mostly I did the explo-

ration by myself, this work may contain inconsistencies and even mistakes.

I summon you to not judge strictly and notify me about them. That is why

I decided to publish this work as open-source. I do not know if it is going

to be successful or not. However, I want to share my knowledge with the

Android friendly community that willingly helps if you do not understand

something.

Currently, code examples in this book are provided for Android 4.2.2 r1.2

version and for Androlized Linux kernel 3.4 version.
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Chapter 1

Android

The comprehension of the Android security architecture helped me not only

understand how Android works but also open my eyes how mobile operat-

ing systems and Linux are constructed. This chapter considers the basics

of the Android architecture from the security perspective. In Section 1.1

we consider the main layers of Android, while Section 1.2 gives high-level

overview of the security mechanisms implemented in this operating system.

1.1 Android Stack

Android is a software stack for a wide range of mobile devices and a cor-

responding open-source project led by Google [9]. Android consists of

four layers: Linux Kernel, Native Userspace, Application Framework and

Applications. Sometimes Native Userspace and Application Framework

layers are combined into the one called Android Middleware. Figure 1.1

represents the layers of the Android software stack. Roughly saying, in

this figure the green blocks correspond to the components developed in

C/C++, while the blue cohere with the ones implemented in Java. Google

distributes the most part of the Android code under Apache version 2.0

licence. The most notable exception to this rule is the changes in the Linux

Kernel, which are under GNU GPL version 2 licence.
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CHAPTER 1. ANDROID
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Figure 1.1: Android software stack

Linux Kernel. Before being acquainted by Google in 2005, Android was

a startup product of the Android Inc. company. One of the features of

startup companies is their tendency to maximise the reuse of already ex-

isting components to reduce the time and the cost of their product. So

did Android Inc. selecting the Linux Kernel as a centerpiece of their new

platform. In Android, Linux Kernel is responsible for process, memory,

communication, filesystem management, etc. While Android mostly relies

on the “vanilla” Linux Kernel functionality, several custom changes, which

are required for the system operation, have been proposed to this level.

Among them Binder (a driver, which provides the support for custom
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1.1. ANDROID STACK

RPC/IPC mechanism in Android), Ashmem (a replacement of the stan-

dard Linux shared memory functionality), Wakelocks (a mechanism that

prevents the system from going to sleep) are the most notable ones [19].

Although these changes proved to be very useful in case of mobile operating

systems, they are still out of the main branch of Linux Kernel.

Native Userspace. By the Native Userspace we understand all userspace

components that run outside Dalvik Virtual Machine and do not belong

to the Linux Kernel layer. The first component of this layer is Hardware

Abstraction Layer (HAL) that is actually blurred between the Linux Kernel

and Native Userspace layers. In Linux, drivers for hardware are either

embedded into the kernel or loaded dynamically as modules. Although

Android is built on top of Linux Kernel it exploits a very different approach

to support new hardware. Instead, for each type of hardware Android

defines an API that is used by upper layers to interact with this type of

hardware. The suppliers of a hardware must provide a software module

that is responsible for the implementation of the API defined in Android

for this particular type of hardware. Thus, this solution allows Android

not to embed all possible drivers into the kernel anymore and to disable

the dynamic module loading kernel mechanism. The component, which

provides this functionality, has been called Hardware Abstraction Layer in

Android. Additionally, such architectural solution lets hardware suppliers

to select the licence, under which their drivers are distributed [18,19].

Kernel finishes its booting by starting only one userspace process called

init. This process is responsible for starting all other processes and ser-

vices in Android, along with performing some operations in the operating

system. For instance, if a critical service stops answering in Android, the

init process can reboot it. This process performs operations in accordance

to the init.rc configuration file. Toolbox includes essential binaries, which

provide shell utilities functionality in Android [19].

Android also relies on a number of key daemons. It starts them during

system startup and preserves them running, when the system is work-
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CHAPTER 1. ANDROID

ing. For instance, rild (the Radio Interface Layer daemon, responsible for

communications between baseband processor and other system), servicem-

anager (a daemon, which contains an index of all Binder services running

in Android), adbd (Android Debug Bridge daemon that serves as a con-

nection manager between host and target equipment), etc.

The last but not least component in Native Userspace is Native Li-

braries. There are two types of Native Libraries: native libraries that

come from external projects, and developed within Android itself. These

libraries are loaded dynamically and provide various functionality for An-

droid processes [19].

Application Framework. Dalvik is Android’s registry-based virtual ma-

chine. It allows the operating system to execute Android applications,

which are written using Java language. During the built process, Java

classes are compiled into a .dex file that are interpreted by the Dalvik VM.

The Dalvik VM was specifically designed to be run in constrained envi-

ronments. Additionally, the Dalvik VM provides functionality to interact

with the rest of the system, including native binaries and libraries. To

accelerate the process initialization procedure Android exploits a specific

component called Zygote. This is a special “pre-warmed” process that has

all core libraries linked in. When a new app is about to run, Android forks

a new process from Zygote and sets the parameters of the process accord-

ing to the specification of the launched application. This solution allows

the operating system not to copy linked libraries into a new process, thus,

speeding up app launching operation. Java Core Libraries, which are used

in Android, are borrowed from Apache Harmony project.

System Services is one of the most important parts of Android. An-

droid comes with a number of System Services that provide basic mo-

bile operating system functionality to be used by Android app developers

in their applications. For instance, PackageManagerService is responsi-

ble for managing (installation, update, deletion, etc.) Android packages

within the operating system. Using JNI interfaces system services can
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interact with the daemons, toolbox binaries and native libraries of the Na-

tive Userspace layer. The public API to System Services is provided via

Android Framework Libraries. This API is used by application developers

to interact with System Services.

Android Applications. Android applications are software applications that

run on Android and provide most of the functionality available for the

user. The stock Android operating system is shipped with a number of

built-in apps called System Applications. These are applications compiled

as a part of AOSP built process. Moreover, the user may install User

Applications from numerous app markets to extend basic and introduce

new functionality to the operating system.

1.2 Android General Security Description

The core security principle of Android is that an adversary app should not

harm the operating system resources, the user and other applications. To

procure the execution of this principle, Android being a layered operating

system, exploits the provided security mechanisms of all the levels. Focus-

ing on security, Android combines two levels of enforcement [?,?]: at the

Linux Kernel level and at the Application Framework level (see Figure 1.2).

At the Linux Kernel level each application is run in special Application

Sandbox. The kernel enforces the isolation of applications and operating

system components exploiting standard Linux facilities (process separa-

tion and Discretionary Access Control over network sockets and filesys-

tem). This isolation is imposed by assigning each application a separate

Unix user (UID) and group (GID) identifiers. Such architectural decision

enforces running each application in a separate Linux process. Thus, due

to Process Isolation implemented in Linux, by default applications cannot

interfere each other and have limited access to the facilities provided by

the operating system. Therefore, Application Sandbox ensures that an ap-

plication cannot drain the operating system resources and cannot interact
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Figure 1.2: Two levels of Android security enforcement

with other apps [3].

The enforcement mechanism provided at the Linux Kernel layer effec-

tively sandboxes an application from other apps and the system compo-

nents. At the same time, an effective communicating protocol is required to

allow developers to reuse application components and interact with the op-

erating system units. This protocol is called Inter-Process Communication

(IPC) because it facilitates the interactions between different processes. In

case of Android, this protocol is implemented at the Android Middleware

level (with a special driver released on the Linux Kernel level). The secu-

rity on this level is provided by the IPC Reference Monitor. The reference

monitor mediates all communications between processes and controls how

applications access the components of the system and other apps. In An-

droid, IPC Reference Monitor follows Mandatory Access Control (MAC)

access control type.

All Android apps by default are run in low-privileged Application Sand-

boxes. Thus, an application has an access only to a limited set of system

capabilities. The Android operating system controls the access of apps to

the system resources that may adversely impact user experience [3]. This

control is implemented in different forms, some of them are considered in

details in following chapters. There is also a subset of protected system

8



1.2. ANDROID GENERAL SECURITY DESCRIPTION

features (for instance, camera, telephony or GPS functionality), the access

to which should be provided to third-party apps. However, this access

should be provided in controlled manner. In case of Android, such control

is realized using Permissions. Basically, each sensitive API, which provides

access to the protected system resources, is assigned with a Permission –

unique security label. Moreover, protected features may also include com-

ponents of other applications.

To make the use of protected features, the developer of an application

must request the corresponding permissions in the file AndroidManifest.xml.

During the installation of an application the Android OS parses this file

and presents the user with the list of the permissions declared in this

file. The installation of an application occurs according to “all or noth-

ing” principle, meaning that the app is installed only if all permissions are

accepted. Otherwise, the application will not be installed. The permis-

sions are granted only at the installation time and can not be modified

later. As an example of a permission, consider an application that needs

to monitor incoming SMS messages. In this case, the AndroidManifest.xml

file must contain in the <uses-permission> tag the following declaration:

"android.permission.RECEIVE SMS"/>.

An attempt of an application to use a feature, which permission has not

been declared in the Android Manifest file, will typically result in a thrown

security exception. The details of permission enforcement mechanism we

consider in the following sections.
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Chapter 2

Android Security on the Linux

Kernel Level

One of the most widely known open-sources projects, Linux has proved

itself as a secure, trusted and stable piece of software being researched,

attacked and patched by thousands of people all over the world. Not sur-

prisingly, Linux Kernel is the basis of the Android operating system [3].

Android relies on Linux not only for process, memory and filesystem man-

agement, it is also one of the most important components in the Android

security architecture. In Android Linux Kernel is responsible for provi-

sioning Application Sandboxing and enforcement of some permission.

2.1 Application Sandboxing

Let consider the process of an Android application installation in details.

Android apps are distributed in the form of Android Package (.apk) files.

A package consists of a Dalvik executable, resources, native libraries and a

manifest file, and is signed by a developer signature. There are three main

mediators that may install a package on a device in the stock Android

operating system:

• Google Play.

• Package Installer.
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CHAPTER 2. ANDROID SECURITY ON THE LINUX KERNEL LEVEL

• adb install.

Google Play is a special application that provides the user with a ca-

pability to look for an application uploaded to the market by third-party

developers along with a possibility to install it. Although it is also a third-

party application, Google Play app (because of being signed with the same

signature as the operating system) has access to protected components of

Android, which other third-party applications lack for. In case if the user

installs applications from other sources she usually implicitly uses Package

Installer app. This system application provides an interface that is used

to start package installation process. The utility adb install, which is pro-

vided by Android, is mainly used by third-party app developers. While the

former two mediators require a user to agree with the list of permissions

during the installation process, the latter installs an app quietly. That is

why it is mainly used in developer tools aiming at installing an application

on a device for testing. This process is shown in the upper part of Fig-

ure 2.1. This figure shows more detailed overview of the Android security

architecture. We will refer to it here and there in this work to explain the

peculiarities of this operating system.

The process of provisioning Application Sandbox at the Linux kernel

level is the following. During the installation, each package is assigned with

a unique user identifier (UID) and a group identifier (GID) that are not

changed during app life on a device. Thus, in Android each application

has a corresponding Linux user. User name follows the format app x,

and UID of that user is equal to Process.FIRST APPLICATION UID + x,

where Process.FIRST APPLICATION UID constant corresponds to 10000.

For instance, in Figure 2.1 ex1.apk package during the installation receives

app 1 user name, and UID equal to 10001 .

In Linux, all files in memory are subject for Linux Discretionary Access

Control (DAC). Access permissions are set by a creator or an owner of a

file for three types of users: the owner of the file, the users who are in the

same group with the owner and all other users. For each type of users, a
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tuple of read, write and execute (r-w-x) permissions are assigned. Hence,

so as each application has its own UID and GID, Linux kernel enforces the

app execution within its own isolated address space. Beside that, the app

unique UIDs and GIDs are used by Linux kernel to enforce fair separation of

device resources (memory, CPU, etc.) between different applications. Each

application during the installation also receives its own home directory, for

instance, /data/data/package name, where package name is the name of an

Android package, for example, com.ex.ex1 In terms of Android, this folder

is Internal Storage, where an application keeps its private data. Linux

permissions assigned to this directory allows only the “owner” application

to write to and read from this directory. It should be mentioned that there

are some exceptions. The apps, which are signed with the same certificate,

are able to share data between each other, may have the same UID or can

even run in the same process.
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CHAPTER 2. ANDROID SECURITY ON THE LINUX KERNEL LEVEL

These architectural decisions set up effective and efficient Application

Sandbox on the Linux Kernel level. This type of sandbox is simple and

based on the verified Linux Discretionary Access Control model. Luckily,

so as the sandbox is enforced on the Linux Kernel level, native code and op-

erating system applications are also subject to these constraints described

in this chapter [3].

2.2 Permission Enforcement on the Linux Kernel level

It is possible to restrict the access to some system capabilities by assigning

the Linux user and group owners to the components that implement this

functionality. This type of restrictions can be applied to system resources

like files, drivers and sockets. Android uses Filesystem Permissions and

Android-specific kernel patches (known as Paranoid Networking) [13] to

restrict the access to low-level system features like network sockets, camera

device, external storage, possibility to read logs, etc.

Using filesystem permissions to files and device drivers, it is possible

to limit processes in accessing some functionality of a device. For in-

stance, such technique is applied to restrict access of applications to a

device camera. The permissions to /dev/cam device driver is set to 0660,

with root owner and camera owner group. This means that only pro-

cesses run as root or which are included in camera group, are able to read

from and write to this device driver. Thus, only applications, which are

included into camera group can interact with the camera. The mappings

between permission labels and corresponding groups are defined in the file

frameworks/base/data/etc/platform.xml, which excerpt is presented in List-

ing 2.1. Thus, during the installation if an app has requested the access

to a camera feature and the user has approved it, this application is also

assigned a camera Linux group GID (see corresponding Lines 8 and 9 in

Listing 2.1). Therefore, this app receives a possibility to read information

from /dev/cam device driver.

There are several points in Android where filesystem permissions to
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2.2. PERMISSION ENFORCEMENT ON THE LINUX KERNEL LEVEL

1 . . .

2 <permi s s i ons>

3 . . .

4 <permis s ion name=”android . permis s ion .INTERNET” >

5 <group gid=” i n e t ” />

6 </ permis s ion>

7

8 <permis s ion name=”android . permis s ion .CAMERA” >

9 <group gid=”camera” />

10 </ permis s ion>

11

12 <permis s ion name=”android . permis s ion .READ LOGS” >

13 <group gid=” log ” />

14 </ permis s ion>

15 . . .

16 </ pe rmi s s i ons>

Listing 2.1: The mappings between permission labels and Linux groups

files, drivers and unix-sockets are set in: init program, init.rc configuration

file(s), ueventd.rc configuration file(s) and system ROM filesystem config

file. They are considered in details in Chapter 3.

In traditional Linux distributions, all processes are allowed to initiate

network connections. At the same time, for mobile operating systems the

access to networking capabilities has to be controlled. To implement this

control in Android, special kernel patches have been added that limit the

access to network facilities only to the processes that belong to specific

Linux groups or have specific Linux capabilities. These Android-specific

patches of the Linux kernel have obtained the name Paranoid networking.

For instance, for AF INET socket address family, which is responsible for

network communication, this check is performed in kernel/net/ipv4/af inet.c

file (see the code extraction in Listing 2.2). The mappings between the

Linux groups and permission labels for Paranoid networking are also set

in platform.xml file (for instance, see Line 4 in Listing 2.1).

Similar Paranoid Networking patches are also applied to restrict the

access to IPv6 and Bluetooth [19].

The constants used in these checks are hardcoded in the kernel and

specified in the kernel/include/linux/android aid.h file (see Listing 2.3).

Thus, at the Linux Kernel level the Android permissions are enforced
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CHAPTER 2. ANDROID SECURITY ON THE LINUX KERNEL LEVEL

1 . . .

2 #i f d e f CONFIGANDROID PARANOIDNETWORK

3 #inc lude <l i nux / andro id a id . h>

4

5 s t a t i c i n l i n e i n t cur rent has network ( void )

6 {
7 r e turn in egroup p (AID INET) | | capable (CAPNETRAW) ;

8 }
9 #e l s e

10 s t a t i c i n l i n e i n t cur rent has network ( void )

11 {
12 r e turn 1 ;

13 }
14 #end i f

15 . . .

16

17 /∗
18 ∗ Create an i n e t socke t .

19 ∗/
20

21 s t a t i c i n t i n e t c r e a t e ( s t r u c t net ∗net , s t r u c t socke t ∗ sock , i n t protoco l ,

22 i n t kern )

23 {
24 . . .

25 i f ( ! cur rent has network ( ) )

26 r e turn −EACCES;
27 . . .

28 }

Listing 2.2: Paranoid networking patch

by checking if an application is included into a special predefined group.

Only the members of this group have access to the protected functionality.

During the installation of an app, if a user has agreed with the requested

permission, the application is included into the corresponding Linux group

and, hence, receives access to the protected functionality.
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1 . . .

2 #i f n d e f LINUX ANDROID AID H

3 #de f i n e LINUX ANDROID AID H

4

5 /∗ AIDs that the ke rne l t r e a t s d i f f e r e n t l y ∗/
6 #de f i n e AID OBSOLETE 000 3001 /∗ was NET BT ADMIN ∗/
7 #de f i n e AID OBSOLETE 001 3002 /∗ was NET BT ∗/
8 #de f i n e AID INET 3003

9 #de f i n e AID NET RAW 3004

10 #de f i n e AID NET ADMIN 3005

11 #de f i n e AID NET BW STATS 3006 /∗ read bandwidth s t a t i s t i c s ∗/
12 #de f i n e AID NET BW ACCT 3007 /∗ change bandwidth s t a t i s t i c s account ing ∗/
13

14 #end i f

Listing 2.3: Android id constants hardcoded in Linux kernel





Chapter 3

Android Security on the Native

Userspace Level

The Native Userspace level plays an important role in the security provi-

sioning of the Android operating system. It is impossible to understand

how the security architectural decisions are enforced in the system without

the comprehension what happens on this layer. In this chapter the topics

of the Android booting process and the filesystem peculiarities are consid-

ered along with the description how the security is enforced on the Native

Userspace level.

3.1 Android Booting Process

To understand what procedures provision security on the Native Userspace

level, at first the booting sequence of an Android device should be consid-

ered. It should be mentioned that during the first steps this sequence may

vary on different devices but after the Linux kernel is loaded the process is

usually the same. The flow of the booting process is shown in Figure 3.1.

When a user powers on a smartphone the CPU of the device will appear

in a non-initialised state. In this case, a processor starts executing com-

mands beginning from a hardwired address. This address points to a piece

of code in the write-protected memory of the CPU, where Boot ROM is lo-

cated (see Step 1 in Figure 3.1). The main aim of the code resided on Boot
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Figure 3.1: Android boot sequence

ROM is to detect a media, where Boot Loader is located [17]. When the

detection is done, Boot ROM loads Boot Loader into the internal memory

(which is only available after device power-on) and performs a jump to the

loaded code of Boot Loader. On its turn, Boot Loader sets up external

RAM, filesystem and network support. After that it loads Linux Kernel

into the memory and passes the execution to it. Linux Kernel initialises the

environment to run C code, activates interrupt controllers, sets up mem-

ory management units, defines scheduling, loads drivers and mounts root

filesystem. When memory management units are initialized, the system is

ready to use virtual memory and run user-space processes [17]. Actually,

starting from this step the process does not differ from the one that occurs
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on desktop computers running Linux.

The first user-space process, which is an ancestor of all processes in

Android, is init. The executable of this program is located in the root

directory of the Android filesystem. Listing 3.1 contains the focal points

of the sources of this executable. It can be seen that the init binary is

responsible for the creation of the basic filesystem entries (Lines from 7

to 16). After that (Line 18), the program parses the init.rc configuration

file and executes the commands written there.

1 i n t main ( i n t argc , char ∗∗ argv )

2 {
3 . . .

4 i f ( ! strcmp ( basename ( argv [ 0 ] ) , ”ueventd” ) )

5 r e turn ueventd main ( argc , argv ) ;

6 . . .

7 mkdir ( ”/dev” , 0755) ;

8 mkdir ( ”/proc ” , 0755) ;

9 mkdir ( ”/ sys ” , 0755) ;

10

11 mount ( ” tmpfs” , ”/dev” , ” tmpfs” , MS NOSUID, ”mode=0755” ) ;

12 mkdir ( ”/dev/ pts ” , 0755) ;

13 mkdir ( ”/dev/ socke t ” , 0755) ;

14 mount ( ” devpts ” , ”/dev/ pts ” , ” devpts ” , 0 , NULL) ;

15 mount ( ”proc ” , ”/proc ” , ” proc ” , 0 , NULL) ;

16 mount ( ” s y s f s ” , ”/ sys ” , ” s y s f s ” , 0 , NULL) ;

17 . . .

18 i n i t p a r s e c o n f i g f i l e ( ”/ i n i t . r c ” ) ;

19 . . .

20 }

Listing 3.1: The sources of init program

The init.rc configuration file is written using a language called Android

Init Language and located in the root directory. This configuration file can

be imagined as a list of actions (sequence of commands), which execution is

triggered by the predefined events. For instance, in Listing 3.2, fs (Line 1)

is a trigger, while Lines 4 – 7 represent the Actions. The commands written

in the init.rc configuration file defines system global variables, sets up ba-

sic kernel parameters for memory management, configures filesystem, etc.

What is more important from the security perspective, it is also respon-

sible for the basic filesystem structure creation and for the assignment of

the owners and the filesystem permissions to the created nodes.
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1 on f s

2 # mount mtd p a r t i t i o n s

3 # Mount / system rw f i r s t to g ive the f i l e s y s t em a chance to save a checkpo int

4 mount y a f f s 2 mtd@system /system

5 mount y a f f s 2 mtd@system /system ro remount

6 mount y a f f s 2 mtd@userdata /data nosuid nodev

7 mount y a f f s 2 mtd@cache / cache nosuid nodev

Listing 3.2: The list of actions performed on fs trigger in emulator

Additionally, the init program is responsible for starting several essential

daemons and processes in Android (see Step 5 in Figure 3.1), the param-

eters of which are also defined in the init.rc file. An executed process in

Linux by default is run with the same permissions (under the same UID)

as an ancestor. In Android, init is started with the root privileges (UID ==

0). This means that all descendant processes should run with the same

UID. Luckily, the privileged processes may change their UIDs to the less

privileged ones. Thus, all descendants of the init process may use this func-

tionality specifying the UID and the GID of a forked process (the owner

and group are also defined in the init.rc file).

One of the first daemons, which is forked from the init process, is the

ueventd daemon. This service runs its own main function (see Line 5 in

Listing 3.1) that reads the ueventd.rc and ueventd.[device name].rc config-

uration files and replays the specified there kernel uevent hotplug events.

These events set up the owners and permissions for different devices (see

Listing 3.3). For instance, Line 5 shows how the filesystem permissions

to /dev/cam device are set, which example was considered in Section 2.2.

After that, the daemon waits listening for all future hotplug events.

1 . . .

2 /dev/ashmem 0666 root root

3 /dev/ binder 0666 root root

4 . . .

5 /dev/cam 0660 root camera

6 . . .

Listing 3.3: ueventd.rc file

One of the core services started by the init program is servicemanager
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(see Step 5 in Figure 3.1). This service acts as an index of all services

running in Android. It must be available on early phase because all sys-

tem services, which are started afterward, should have a possibility to

register themselves and, thus, become visible to the rest of the operating

system [19].

Another core process launched by the init process is Zygote. Zygote is

a special process that has been warmed-up. This means that the process

has been initialised and linked against the core libraries. Zygote is an

ancestor for all processes. When a new application is started, Zygote forks

itself. After that, the parameters corresponding to a new application, for

instance, UID, GIDs, nice-name, etc., are set for the forked child process.

The acceleration of a new process creation is achieved because there is

no need to copy core libraries into the new process. The memory of a

new process has “copy-on-write” protection, meaning that the data will

be copied from the zygote process to a new one only if the latter tries to

write into the protected memory. So as core libraries cannot be changed,

they are remained only in one place reducing memory consumption and

the application startup time.

The first process, which is run using Zygote is System Server (Step 6

in Figure 3.1). This process, at first, runs native services, such as Sur-

faceFlinger and SensorService. After the services initialized, a callback is

invoked, which starts the remaining services. All these services are then

registered with servicemanager.

3.2 Android Filesystem

Although Android is based on Linux Kernel, its filesystem hierarchy does

not comply with Filesystem Hierarchy Standard [10] that defines filesystem

layout of Unix-like systems (see Listing 3.4). Some directories in Android

and in Linux are the same, for instance, /dev, /proc, /sys, /etc, /mnt, etc.

The purposes of these folders are the same as in Linux. At the same time,

there are directories, such as /system, /data and /cache, which cannot be
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found in the Linux systems. These folders are the core parts of Android.

During the build of the Android operating system, three image files are

created: system.img, userdata.img and cache.img. These images provide

the core functionality of Android and are the ones that are flashed on

a device. During the boot of the system the init program mounts these

images to the predefined mounting points, like /system, /data and /cache

correspondingly (see Listing 3.2).

1 drwxr−xr−x root root 2013−04−10 08 : 13 acct

2 drwxrwx−−− system cache 2013−04−10 08 : 13 cache

3 dr−x−−−−−− root root 2013−04−10 08 : 13 c on f i g

4 lrwxrwxrwx root root 2013−04−10 08 : 13 d −> / sys / ke rne l /debug

5 drwxrwx−−x system system 2013−04−10 08 : 14 data

6 −rw−r−−r−− root root 116 1970−01−01 00 : 00 d e f au l t . prop

7 drwxr−xr−x root root 2013−04−10 08 : 13 dev

8 lrwxrwxrwx root root 2013−04−10 08 : 13 e t c −> / system/ etc

9 −rwxr−x−−− root root 244536 1970−01−01 00 : 00 i n i t

10 −rwxr−x−−− root root 2487 1970−01−01 00 : 00 i n i t . g o l d f i s h . rc

11 −rwxr−x−−− root root 18247 1970−01−01 00 : 00 i n i t . r c

12 −rwxr−x−−− root root 1795 1970−01−01 00 : 00 i n i t . t r a c e . rc

13 −rwxr−x−−− root root 3915 1970−01−01 00 : 00 i n i t . usb . rc

14 drwxrwxr−x root system 2013−04−10 08 : 13 mnt

15 dr−xr−xr−x root root 2013−04−10 08 : 13 proc

16 drwx−−−−−− root root 2012−11−15 05 : 31 root

17 drwxr−x−−− root root 1970−01−01 00 : 00 sb in

18 lrwxrwxrwx root root 2013−04−10 08 : 13 sdcard −> /mnt/ sdcard

19 d−−−r−x−−− root sdcard r 2013−04−10 08 : 13 s to rage

20 drwxr−xr−x root root 2013−04−10 08 : 13 sys

21 drwxr−xr−x root root 2012−12−31 03 : 20 system

22 −rw−r−−r−− root root 272 1970−01−01 00 : 00 ueventd . g o l d f i s h . rc

23 −rw−r−−r−− root root 4024 1970−01−01 00 : 00 ueventd . rc

24 lrwxrwxrwx root root 2013−04−10 08 : 13 vendor −> / system/vendor

Listing 3.4: Android filesystem

The /system partition incorporates the entire Android operating system

except the Linux kernel, which itself is located on the /boot partition. This

folder contains the subdirectories /system/bin and /system/lib that contain

core native executables and shared libraries correspondingly. Additionally,

this partition encompass all system applications that are prebuilt with the

system image. The image is mounted in read only mode (see Line 5 in

Listing 3.2). Hence, the content of this partition cannot be changed at

runtime.

So as /system partition is mounted as read-only, it cannot be used for
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storing data. For this purposes the separate partition /data is allocated

that responsible for storing user data or information changing over the

time. For instance, /data/app directory contains all apk files of installed

applications, while /data/data folder encloses “home” directories of the

apps.

The /cache partition is responsible for storing frequently accessed data

and application components. Additionally, the operating system over-the-

air updates are also stored on this partition before being run.

So as /system, /data and /cache are formed during the compilation of

Android, the default rights and owners to the files and folders contained on

these images have to be defined at compile time. This means that the user

and groups UIDs and GIDs should be available during the compilation of

this operating system. The android filesystem config.h file (see Listing 3.5)

contains the list of predefined users and groups. It should be mentioned

that the values in some lines (for instance, see Line 10) correspond to the

ones already defined on the Linux Kernel level, described in Section 2.2.

Additionally, in this file the default rights, owners and owner groups of

the files and folders are defined (see Listing 3.6). These rules are parsed

and applied by fs config() function, which is defined in the end of this

file. This function is called during the assembly of the images.

3.2.1 Native Executables Protection

It can be mentioned in Listing 3.6 that some binaries are assigned with

setuid and setgid access rights flags. For instance, the su program has

them set. This well-known utility allows a user to run a program with the

specified UID and GID. In Linux this functionality is usually used to run

programs with superuser privileges. According to Listing 3.6, the binary

/system/xbin/su is assigned with the access rights equal to “06755” (see

Line 21). The first non-zero number “6” means that this binary has setuid

and setgid (4 + 2) access rights flags set. Usually, in Linux an executable

is run with the same privileges as the process that has started it. These
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1 #de f i n e AID ROOT 0 /∗ t r a d i t i o n a l unix root user ∗/
2 #de f i n e AID SYSTEM 1000 /∗ system s e rv e r ∗/
3 #de f i n e AID RADIO 1001 /∗ te lephony subsystem , RIL ∗/
4 #de f i n e AID BLUETOOTH 1002 /∗ bluetooth subsystem ∗/
5 #de f i n e AID GRAPHICS 1003 /∗ graph i c s dev i c e s ∗/
6 #de f i n e AID INPUT 1004 /∗ input dev i c e s ∗/
7 #de f i n e AID AUDIO 1005 /∗ audio dev i c e s ∗/
8 #de f i n e AID CAMERA 1006 /∗ camera dev i c e s ∗/
9 . . .

10 #de f i n e AID INET 3003 /∗ can c r e a t e AF INET and AF INET6 socke t s ∗/
11 . . .

12 #de f i n e AID APP 10000 /∗ f i r s t app user ∗/
13 . . .

14 s t a t i c const s t r u c t a nd r o i d i d i n f o and ro id i d s [ ] = {
15 { ” root ” , AID ROOT, } ,
16 { ” system” , AID SYSTEM, } ,
17 { ” rad io ” , AID RADIO, } ,
18 { ” b luetooth ” , AID BLUETOOTH, } ,
19 { ” graph i c s ” , AID GRAPHICS, } ,
20 { ” input ” , AID INPUT, } ,
21 { ” audio ” , AID AUDIO, } ,
22 { ”camera” , AID CAMERA, } ,
23 . . .

24 { ” i n e t ” , AID INET , } ,
25 . . .

26 } ;

Listing 3.5: Android hard-coded UIDs and GIDs and their mapping to user names

flags allows a user to run a program with the privileges of executable owner

or group [11]. Thus, in our case the binary /system/xbin/su will be run

as root user. These root privileges allow the program to change its UID

and GID to the ones specified by a user (see Line 15 in Listing 3.7). After

that, su may start the provided program (for instance, see Line 22) with

the specified UID and GID. Therefore, the program will be started with

the required UID and GID.

In the case of privileged programs it is required to restrict the circle of

applications that have access to such utilities. In our case, without such

restrictions any app may run su program and obtain root level privileges. In

Android, such restrictions on the Native Userspace level are implemented

comparing the UID of the calling program with the list of the UIDs allowed

to run it. Thus, in Line 9 the su executable obtains the current UID of the

process, which is equal to the UID of the process calling it, and in Line 10

it compares this UID with the predefined list of allowed UIDs. Therefore,
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1 /∗ Rules f o r d i r e c t o r i e s . ∗/
2 s t a t i c s t r u c t f s path con f i g android d i r s [ ] = {
3 { 00770 , AID SYSTEM, AID CACHE, ” cache ” } ,
4 { 00771 , AID SYSTEM, AID SYSTEM, ”data/app” } ,
5 . . .

6 { 00777 , AID ROOT, AID ROOT, ” sdcard ” } ,
7 { 00755 , AID ROOT, AID ROOT, 0 } ,
8 } ;
9

10 /∗ Rules f o r f i l e s . ∗/
11 s t a t i c s t r u c t f s path con f i g android f i l e s [ ] = {
12 . . .

13 { 00644 , AID SYSTEM, AID SYSTEM, ”data/app/∗” } ,
14 { 00644 , AID MEDIA RW, AID MEDIA RW, ”data/media/∗” } ,
15 { 00644 , AID SYSTEM, AID SYSTEM, ”data/app−pr i va t e /∗” } ,
16 { 00644 , AID APP, AID APP, ”data/data /∗” } ,
17 . . .

18 { 02755 , AID ROOT, AID NET RAW, ”system/bin /ping ” } ,
19 { 02750 , AID ROOT, AID INET, ” system/bin / ne t c f g ” } ,
20 . . .

21 { 06755 , AID ROOT, AID ROOT, ” system/xbin/su” } ,
22 . . .

23 { 06750 , AID ROOT, AID SHELL, ” system/bin /run−as ” } ,
24 { 00755 , AID ROOT, AID SHELL, ” system/bin /∗” } ,
25 . . .

26 { 00644 , AID ROOT, AID ROOT, 0 } ,
27 } ;

Listing 3.6: Default permissions and owners

only if the UID of the calling process is equal to AID ROOT or AID SHELL

the su utility will be started. To perform such check, su imports the UID

constants (see Line 1) defined in Android.

Additionally, in newer versions (starting from 4.3) the Android core

developers started to use Capabilities Linux kernel system [4]. This allows

them additionally restrict the privileges of the programs that are required

to run with root privileges. For instance, in the considered case of the su

program it is not required to have all privileges of the root user. For this

program it is enough only to have a possibility to change current UID and

GID. Therefore, this utility requires only CAP SETUID and CAP SETGID root

capabilities to operate correctly.
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1 #inc lude <pr i va t e / a nd r o i d f i l e s y s t em c on f i g . h>

2 . . .

3 i n t main ( i n t argc , char ∗∗ argv )

4 {
5 s t r u c t passwd ∗pw;

6 i n t uid , gid , myuid ;

7

8 /∗ Unt i l we have something bette r , only root and the s h e l l can use su . ∗/
9 myuid = getu id ( ) ;

10 i f (myuid != AID ROOT && myuid != AID SHELL) {
11 f p r i n t f ( s tde r r , ” su : uid %d not a l lowed to su\n” , myuid ) ;

12 r e turn 1 ;

13 }
14 . . .

15 i f ( s e t g i d ( g id ) | | s e tu i d ( uid ) ) {
16 f p r i n t f ( s tde r r , ” su : permis s ion denied \n” ) ;
17 r e turn 1 ;

18 }
19

20 /∗ User s p e c i f i e d command f o r exec . ∗/
21 i f ( argc == 3 ) {
22 i f ( exec lp ( argv [ 2 ] , argv [ 2 ] , NULL) < 0) {
23 f p r i n t f ( s tde r r , ” su : exec f a i l e d f o r %s Error :%s \n” , argv [ 2 ] ,

24 s t r e r r o r ( er rno ) ) ;

25 r e turn −errno ;

26 }
27 . . .

28 }

Listing 3.7: Source code of su program



Chapter 4

Android Security on the Framework

Level

As we described in Section 1.2 the security on the Application Framework

level is enforced by IPC Reference Monitor. In Section 4.1 we start our

consideration of the security mechanisms on this level from the description

of the inter-process communication system used in Android. After that we

introduce permissions in Section 4.2, while in Section 4.3 we describe the

permission enforcement system implemented on this level.

4.1 Android Binder Framework

As we described in Section 2.1, all Android applications are run in Ap-

plication Sandboxes. Roughly saying, the sandboxing of the apps is pro-

visioned by running all apps in different processes with different Linux

identities. Additionally, system services are also run in separate processes

with more privileged identities that allow them to get access to different

parts of the system protected using the Linux Kernel DAC capabilities (see

Sections 2.1, 2.2 and 1.2). Thus, an Inter-Process Communication (IPC)

framework is required to organize data and signals exchange between dif-

ferent processes. In Android, a special framework called Binder is used

for inter-process communication [12]. The standard Posix System V IPC
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framework is not supported 1 by the Android implementation of the Bionic

libc library. Moreover, additionally to the Binder framework for some spe-

cial cases Unix domain sockets are used (e.g., for communication with the

Zygote daemon) but the consideration of these mechanisms is out of the

scope of this work.

The Binder framework was specifically redeveloped to be used in An-

droid. It provides the capabilities required to organize all types of commu-

nication between processes in this operating system. Basically, even the

mechanisms, such as Intents and ContentProviders, well-known to applica-

tion developers, are built on top of the Binder framework. This framework

provides the variety of features, such as the possibility to invoke methods

on remote objects as if they were local, synchronous and asynchronous

method invocation, link to death 2, ability to send file descriptors across

processes, etc. [12,16].

The communication between the processes is organized according to

synchronous client-server model. The client initiates a connection and

waits for a reply from the server side. Thus, the communication between

the client and the server may be imagined as they are executed in the same

process thread. This provides a developer with the possibility to invoke

methods on remote objects as if they were local. The communication model

through Binder is presented in Figure 4.1. In this figure, the application

in Process A, which acts as a Client, wants to use the behavior exposed by

a Service, which runs in Process B [12].

All communications between clients and services using the Binder frame-

work happens through a Linux kernel driver /dev/binder. The permis-

sions to this device driver is set to world readable and writable (see Line 3

in Listing 3.3 located in Section 3.1). Hence, any application may write to

and read from this device. To conceal the peculiarities of the Binder com-

munication protocol, the libbinder library is used in Android. It provides

1https://android.googlesource.com/platform/ndk/+/android-4.2.2_r1.2/docs/system/

libc/SYSV-IPC.html
2Link to Death is an automatic notification when a Binder of a certain process is terminated
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Process BKernelProcess A

Client Proxy Binder 
Driver Stub Service

Figure 4.1: Android Binder communication model [12]

the facilities to make the process of interaction with the kernel driver trans-

parent for an app developer. In particular, all communications between a

Client and a Server happen through proxies on the client side and stubs on

the server side. The proxies and the stubs are responsible for marshaling

and unmarshaling the data and the commands sent over the Binder driver.

To make use of proxies and stubs a developer just defines an AIDL inter-

face that is transformed into a proxy and a stub during the compilation of

the application. On the server side, a separate Binder thread is invoked to

process a client request.

Technically, each Service (sometimes called as Binder Service) exposed

using the Binder mechanism is assigned with a token. The kernel driver

ensures that this 32 bit value is unique across all processes in the system.

Thus, this token is used as a handle to a Binder Service. Having this

handle it is possible to interact with the Service. However, to start using

the Service the Client at first has to discover this value. The discovery of

Service’s handle occurs using Binder’s context manager (servicemanager is
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Android’s implementation of Binder’s context manager. Here we use these

notions interchangeably). Context manager is a special Binder Service

with the predefined handle value equal to 0 (the reference to which is ob-

tained in Line 8 in Listing 4.1). So as it has a fixed handle value, any party

can find it and call its methods. Basically, context manager acts as a name

service providing the handle of a Service using the name of this Service.

To achieve this goal, each Service must be registered with context manager

(for instance, using the method addService of the ServiceManager class

in Line 26). Thus, a Client has to know only the name of a Service to com-

municate with it. Resolving this name using context manager (see method

getService Line 12) the Client receives the token that is later used for

the interactions with the Service. The Binder driver allows only a single

context manager to be registered. Therefore, servicemanager is one of the

first services started by Android (see Section 3.1). The component service-

manager ensures that only the privileged system identities are allowed to

register services.

The Binder framework does not impose any security by itself. At

the same time, it provides the facilities to procure the security in An-

droid. The Binder driver adds the UID and the PID of the sender pro-

cess to each transaction. So as each application in the system has its

own UID, this value may be used to identify the calling party. The re-

ceiver of the call may check the obtained values and decide if the trans-

action should be completed. The receiver may get the UID and the PID

of the sender using the calls android.os.Binder.getCallingUid() and

android.os.Binder.getCallingPid() [12]. Additionally, a Binder han-

dle may also act as a security token due to its uniqueness across all the

processes and the obscurity of its value [14].

4.2 Android Permissions

As we consider in Section 2.1, in Android each application by default ob-

tains its own UID and GID system identities. Additionally, there are also
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1 pub l i c f i n a l c l a s s ServiceManager {
2 . . .

3 pr i va t e s t a t i c IServiceManager getIServ iceManager ( ) {
4 i f ( sServiceManager != nu l l ) {
5 r e turn sServiceManager ;

6 }
7 // Find the s e r v i c e manager

8 sServiceManager = ServiceManagerNative . a s I n t e r f a c e ( B inde r In t e rna l .

getContextObject ( ) ) ;

9 r e turn sServiceManager ;

10 }
11

12 pub l i c s t a t i c IBinder g e tS e r v i c e ( S t r ing name) {
13 t ry {
14 IBinder s e r v i c e = sCache . get (name) ;

15 i f ( s e r v i c e != nu l l ) {
16 r e turn s e r v i c e ;

17 } e l s e {
18 r e turn getIServ iceManager ( ) . g e tS e r v i c e (name) ;

19 }
20 } catch ( RemoteException e ) {
21 Log . e (TAG, ” e r r o r in g e tS e r v i c e ” , e ) ;

22 }
23 r e turn nu l l ;

24 }
25

26 pub l i c s t a t i c void addServ ice ( S t r ing name , IBinder s e r v i c e , boolean a l l ow I s o l a t e d ) {
27 t ry {
28 getIServ iceManager ( ) . addServ ice (name , s e r v i c e , a l l ow I s o l a t e d ) ;

29 } catch ( RemoteException e ) {
30 Log . e (TAG, ” e r r o r in addServ ice ” , e ) ;

31 }
32 }
33 . . .

34 }

Listing 4.1: The sources of ServiceManager

a number of the identities hardcoded in the operating system (see List-

ing 3.5). These identities are used to separate the components of the

Android operating system using the DAC enforced on the Linux Kernel

level, thus, increasing the overall security of the operating system. Among

these identities AID SYSTEM stands out. This UID is used to run the Sys-

tem Server (system server), the component that unites the services pro-

vided by the Android OS. The System Server has a privileged access to

the operating system resources, and each service run within the System

Server provides the controlled access to a particular functionality to other

OS components and applications. This controlled access is backed by the
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permission system.

As we consider in Section 4.1, the Binder framework provides the abil-

ity to get the UID and the PID of the sender on the receiver side. In

general case, this functionality may be exploited by a service to control

consumers that want to connect to the service. This can be achieved

by comparing the UID and/or PID of a consumer with the list of UIDs

allowed by the service. However, in Android this functionality is imple-

mented in a slightly different manner. Each critical functionality of a

service (or simply saying a method of a service) is guarded with a spe-

cial label called permission. Roughly saying, before running such method

a check if the calling process is assigned with the permission, is per-

formed. If the calling process has the required permission then the ser-

vice invocation will be allowed. Otherwise, a security check exception will

be thrown (usually, SecurityException). For instance, if a developer

wants to provide her app with a possibility to send SMS she has to add

into app’s AndroidManifest.xml file the following line <uses-permission

android:name="android.permission.SEND SMS" />. Android also pro-

vides a set of special calls that allow to check at runtime if a service con-

sumer has been assigned with a permission.

The permission model described so far provides an effective way to en-

force security. At the same time, this model is ineffective because it con-

siders all the permissions as equal. At the same time, in the case of mobile

operating systems the provided capabilities may not be always equal in the

security sense. For instance, the capability to install applications is more

critical then the ability to send SMSes, which in turn is more dangerous

then the setting an alarm or vibrating.

This problem is addressed in Android by introducing the security lev-

els of permissions. There are four possible levels of permissions: normal,

dangerous, signature and signatureOrSystem. The level of permissions

is either hardcoded into the Android operating system (for system permis-

sions) or assigned by a developer of a third-party app in the declaration of

a custom permission. This level influences on a decision whether to grant
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the permission to a requesting application. To be granted, the normal

permissions have to be just requested in application’s AndroidManifest.xml

file. The dangerous permissions, besides to be requested in the manifest

file, have to be also approved by a user. In this case, during the installa-

tion of an app the user is displayed with the set of permissions requested

by the package. If the user approves them, then the application will be

installed. Otherwise, the installation will be canceled. The signature

permission is granted by the system if the app requested the permission

is signed with the same signatures as the application that has declared it

(the usage of app signatures in Android is considered in Section 6.1). The

signatureOrSystem permission is granted either if the apps requesting and

the declaring the permission are signed with the same certificates or the

requesting application is located on the system image. Thus, for our ex-

ample the vibrating capability will be protected with the permission of the

normal level, send SMSes functionality will be guarded with the dangerous

permission level and package installation ability will be secured with the

signatureOrSystem permission level.

4.2.1 System Permission Definitions

System permissions, which are used to protect Android operating system

functionality, are defined in framework’s AndroidManifest.xml file located

in frameworks/base/core/res folder of the Android sources. An excerpt of

this file with several permission definition examples is shown in Listing 4.2.

In these examples the permission declarations are shown used to protect

sending SMSes, vibrator and package installation functionality.

By default the developers of third-party applications do not have access

to the functionality protected with system permissions of levels signature

and signatureOrSystem. This behaviour is ensured in the following way.

The Application Framework package is signed with the platform certificate.

Thus, the applications requiring the functionality protected with the per-

missions of these levels must be signed with the same platform certificate.
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1 <mani fe s t xmlns :andro id=” ht tp : // schemas . android . com/apk/ r e s / android ”

2 package=”android ” coreApp=” true ” andro id : sharedUser Id=”android . uid . system”

3 andro id : sharedUserLabe l=”@str ing / andro id sy s t em labe l ”>

4 . . .

5 < !−− Allows an app l i c a t i on to send SMS messages . −−>
6 <permis s ion android:name=”android . permis s ion .SEND SMS”

7 andro id :permiss ionGroup=”android . permiss ion−group .MESSAGES”

8 and ro i d : p r o t e c t i onLeve l=”dangerous ”

9 andro id :pe rmi s s i onF lag s=”costsMoney”

10 and r o i d : l a b e l=”@str ing /permlab sendSms”

11 and r o i d : d e s c r i p t i o n=”@str ing /permdesc sendSms” />

12 . . .

13 < !−− Allows ac c e s s to the v ib r a t o r −−>
14 <permis s ion android:name=”android . permis s ion .VIBRATE”

15 andro id :permiss ionGroup=”android . permiss ion−group .AFFECTS BATTERY”

16 and ro i d : p r o t e c t i onLeve l=”normal”

17 and r o i d : l a b e l=”@str ing / permlab v ibrate ”

18 and r o i d : d e s c r i p t i o n=”@str ing / permdesc v ibrate ” />

19 . . .

20 < !−− Allows an app l i c a t i on to i n s t a l l packages . −−>
21 <permis s ion android:name=”android . permis s ion .INSTALL PACKAGES”

22 and r o i d : l a b e l=”@str ing / pe rmlab in s ta l lPackage s ”

23 and r o i d : d e s c r i p t i o n=”@str ing / pe rmdesc in s ta l lPackage s ”

24 and ro i d : p r o t e c t i onLeve l=” s i gna tu r e | system” />

25 . . .

26 </mani f e s t>

Listing 4.2: The definitions of system permissions

However, the access to the private key of this certificate is available only

to the builders of the operating system, usually hardware producers (who

make their own customization of Android) or telecommunication opera-

tors (who distribute the phones with their modified images of operating

systems).

4.2.2 Permission Management

The system service PackageManagerService is responsible for the appli-

cation management in Android. This service assists the installation, unin-

stallation and update of applications in the operating system. Another

important role of this service is permission management. Basically, it can

be considered as a policy administration point. It stores the information

that allows to check if an Android package is assigned with a particular per-

mission. Additionally, during the installation and upgrade of applications

it performs a bunch of checks to ensure that the integrity of permission
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model is not violated during these processes. Moreover, it also acts as a

policy decision point. The methods of this service (as we will show later)

are the last elements in the chain of the permission checks. We will not

consider the operation of PackageManagerService here. However, the

interested reader may refer to [15, 19] to get some more details how the

installation of applications is performed.

PackageManagerService stores all information related to permissions

of third-party applications in the /data/system/packages.xml [7]. This file

is used as a persistent storage between the restarts of the system. However,

at runtime all information about permissions is preserved in RAM allowing

to increase the responsiveness of the system. This information is collected

during the boot using the data stored in the packages.xml file for third-party

applications and through parsing system apps.

4.3 Permission Enforcement on the Application Frame-

work level

To understand how Android enforces permissions on the Application Frame-

work level, for instance, let consider the Vibrator Service. In Listing 4.3 in

Line 6 an example how the Vibrator Service protects its method vibrate

is shown. In this line the check is performed if a calling component is as-

signed with the label android.permission.VIBRATE defined by the con-

stant android.Manifest.permission.VIBRATE. Android provides several

methods to check if a sender (or service consumer) has been assigned with

a permission. In our case, these facilities are represented by the method

checkCallingOrSelfPermission. Additionally to this method, there are

also a number of other methods that can be used to check the permissions

of the service caller.

The implementation of the method checkCallingOrSelfPermission is

shown in Listing 4.4. In Line 24 the method checkPermission is called. It

takes the uid and the pid as parameters that are provided by the Binder
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1 pub l i c c l a s s V ib ra to rSe rv i c e extends IV ib r a t o rS e rv i c e . Stub

2 implements InputManager . InputDev i ceL i s t ener {
3 . . .

4 pub l i c void v ib ra t e ( long mi l l i s e c ond s , IBinder token ) {
5 i f (mContext . checkCa l l i ngOrSe l fPermi s s i on ( android . Mani fest . permis s ion .VIBRATE)

6 != PackageManager .PERMISSION GRANTED) {
7 throw new Secur i tyExcept ion ( ”Requires VIBRATE permis s ion ” ) ;

8 }
9 . . .

10 }
11 . . .

12 }

Listing 4.3: The check of a permission

framework.

In Line 11, the check is redirected to the ActivityManagerService class

that in turn performs the actual check in the method checkComponentPermission

of the ActivityManager component. The code of this method is presented

in Listing 4.5. In Line 4 it checks if the caller UID belongs to the privileged

ones. The components with the root and system UIDs are granted by the

system with all permissions.

In Line 26 in Listing 4.5 the permission check is redirected to Package

Manager that forwards it to PackageManagerService. As we explained

before, this service knows what permissions are assigned to Android pack-

ages. The PackageManagerService method, which performs the permis-

sion check, is presented in Listing 4.6. In Line 7 the exact check is per-

formed if a permission is granted to the Android app defined by its UID.
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1 c l a s s ContextImpl extends Context {
2 . . .

3 @Override

4 pub l i c i n t checkPermiss ion ( St r ing permiss ion , i n t pid , i n t uid ) {
5 i f ( permis s ion == nu l l ) {
6 throw new I l l ega lArgumentExcept ion ( ” permis s ion i s nu l l ” ) ;

7 }
8

9 t ry {
10 r e turn ActivityManagerNative . ge tDe fau l t ( ) . checkPermiss ion (

11 permiss ion , pid , uid ) ;

12 } catch ( RemoteException e ) {
13 r e turn PackageManager .PERMISSION DENIED;

14 }
15 }
16

17 @Override

18 pub l i c i n t checkCa l l ingOrSe l fPermi s s i on ( S t r ing permis s ion ) {
19 i f ( permis s ion == nu l l ) {
20 throw new I l l ega lArgumentExcept ion ( ” permis s ion i s nu l l ” ) ;

21 }
22

23 r e turn checkPermiss ion ( permiss ion , Binder . g e tCa l l i ngP id ( ) ,

24 Binder . ge tCa l l ingUid ( ) ) ;

25 }
26 . . .

27 }

Listing 4.4: The excerpt of ContextImpl class



1 pub l i c s t a t i c i n t checkComponentPermission ( S t r ing permiss ion , i n t uid ,

2 i n t owningUid , boolean exported ) {
3 // Root , system s e rv e r get to do everyth ing .

4 i f ( uid == 0 | | uid == Process .SYSTEM UID) {
5 r e turn PackageManager .PERMISSION GRANTED;

6 }
7 // I s o l a t e d p r o c e s s e s don ’ t get any permi s s i ons .

8 i f ( UserId . i s I s o l a t e d ( uid ) ) {
9 r e turn PackageManager .PERMISSION DENIED;

10 }
11 // I f the re i s a uid that owns whatever i s be ing accessed , i t has

12 // blanket a c c e s s to i t r e g a r d l e s s o f the pe rmi s s i ons i t r e qu i r e s .

13 i f ( owningUid >= 0 && UserId . isSameApp ( uid , owningUid ) ) {
14 r e turn PackageManager .PERMISSION GRANTED;

15 }
16 // I f the t a r g e t i s not exported , then nobody e l s e can get to i t .

17 i f ( ! exported ) {
18 Slog .w(TAG, ”Permiss ion denied : checkComponentPermission ( ) owningUid=” +

owningUid ) ;

19 r e turn PackageManager .PERMISSION DENIED;

20 }
21 i f ( permis s ion == nu l l ) {
22 r e turn PackageManager .PERMISSION GRANTED;

23 }
24 t ry {
25 r e turn AppGlobals . getPackageManager ( )

26 . checkUidPermiss ion ( permiss ion , uid ) ;

27 } catch ( RemoteException e ) {
28 // Should never happen , but i f i t does . . . deny !

29 Slog . e (TAG, ”PackageManager i s dead ? ! ? ” , e ) ;

30 }
31 r e turn PackageManager .PERMISSION DENIED;

32 }

Listing 4.5: Method checkComponentPermission of the ActivityManager



1 pub l i c i n t checkUidPermiss ion ( S t r ing permName , i n t uid ) {
2 f i n a l boolean en fo r c edDe fau l t = i sPermi s s i onEnfo rcedDe fau l t (permName) ;

3 synchron ized (mPackages ) {
4 Object obj = mSett ings . getUserIdLPr ( UserHandle . getAppId ( uid ) ) ;

5 i f ( obj != nu l l ) {
6 GrantedPermiss ions gp = ( GrantedPermiss ions ) obj ;

7 i f ( gp . grantedPermiss ions . conta in s (permName) ) {
8 r e turn PackageManager .PERMISSION GRANTED;

9 }
10 } e l s e {
11 HashSet<Str ing> perms = mSystemPermissions . get ( uid ) ;

12 i f ( perms != nu l l && perms . conta in s (permName) ) {
13 r e turn PackageManager .PERMISSION GRANTED;

14 }
15 }
16 i f ( ! i sPermiss ionEnforcedLocked (permName , en fo r c edDe fau l t ) ) {
17 r e turn PackageManager .PERMISSION GRANTED;

18 }
19 }
20 r e turn PackageManager .PERMISSION DENIED;

21 }

Listing 4.6: The method checkUidPermission of PackageManagerService





Chapter 5

Android Security on the Application

Level

Although in this section we describe the security on the Application level,

the actual security enforcement usually happens on lower layers described

so far. However, it is easier to explain some security features of Android

after introducing the Application level.

5.1 Application Components

Android apps are distributed in the form of Android Package (.apk) files.

A package consists of Dalvik executable files, resources files, a manifest

file and native libraries, and is signed by the developer of the applications

using self-signed certificate.

Each Android application consists of several components of four compo-

nent types: Activities, Services, Broadcast Receivers and Content Providers.

The separation of an application into the components supports the reuse

of application parts between the apps.

Activity . An Activity is an element of user interface. Generally speaking,

the activity often represents a screen.

Service . A Service is a background worker in Android. The service can

run indefinite time. The most famous example of a service is media
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player that plays music in the background even if the user leaves the

activity that has started this service.

Broadcast receiver . A Broadcast Receiver is a component of an applica-

tion that receives broadcast messages and starts a workflow according

to the obtained message.

Content provider . A Content Provider is a component that provides

an application with abilities to store and retrieve data. It also permits

to share a set of data with another application.

So as Android applications consist of different components, there is no

central entry point unlike Java programs with the main method. Having

no central point, all components (with an exception to broadcast receivers

that may also be defined dynamically) need to be declared by the developer

of an application in the AndroidManifest.xml file. The separation into com-

ponents makes possible to use parts in other applications. For instance,

in Listing 5.1 an example of app’s AndroidManifest.xml file is shown. This

application consists of one Activity declared in Line 21. Other applications

may call this activity integrating the functionality of this component into

their apps.

Android provides a variety of methods to invoke the components of ap-

plications. A new Activity is started by using the methods startActivity

and startActivityForResult. Services are started through the method

startService. In this case, called service invokes its method onStart.

When a developer is going to establish a connection between a compo-

nent and a service she invokes the bindService method and the onBind

method is invoked in the called service. Broadcast receivers are started

when an app or system component send special messages using the meth-

ods sendBroadcast, sendOrderedBroadcast and sendStickyBroadcast.

Content providers are invoked by the requests from content resolvers.

All other component types are activated through Intents. Intents is a

special mean of communication in Android based on the Binder framework.
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1 <?xml ve r s i on=” 1 .0 ” encoding=”utf−8”?>
2 <mani fe s t xmlns :andro id=” ht tp : // schemas . android . com/apk/ r e s / android ”

3 package=”com . te s tpackage . te s tapp ”

4 andro id :ver s ionCode=”1”

5 android:vers ionName=” 1 .0 ”

6 andro id : sharedUser Id=”com . te s tpackage . shareduid ”

7 andro id : sharedUserLabe l=”@str ing / sharedUserId ” >

8

9 <uses−sdk android:minSdkVers ion=”10” />

10

11 <permis s ion android:name=”com . te s tpackage . permis s ion . mypermission”

12 and r o i d : l a b e l=”@str ing /mypermis s i on s t r ing ”

13 and r o i d : d e s c r i p t i o n=”@str ing /mype rmi s s i on de s c r s t r i ng ”

14 and ro i d : p r o t e c t i onLeve l=”dangerous ” />

15

16 <uses−permis s ion android:name=”android . permis s ion .SEND SMS”/>

17

18 <app l i c a t i on

19 andro id : i c on=”@drawable/ i c l a un ch e r ”

20 and r o i d : l a b e l=”@str ing /app name” >

21 <a c t i v i t y android:name=” . Tes tAct iv i ty ”

22 and r o i d : l a b e l=”@str ing /app name”

23 andro id :pe rmi s s i on=”com . te s tpackage . permis s ion . mypermission” >

24 <in tent− f i l t e r>

25 <ac t i on android:name=”android . i n t en t . a c t i on .MAIN” />

26 <category android:name=”android . i n t en t . category .LAUNCHER” />

27 </ intent− f i l t e r>

28 <in tent− f i l t e r >

29 <ac t i on android:name=”com . te s tpackage . te s tapp .MY ACTION” />

30 <category android:name=”android . i n t en t . category .DEFAULT” />

31 </ intent− f i l t e r>

32 </ a c t i v i t y>

33 </ app l i c a t i o n>

34 </mani f e s t>

Listing 5.1: Example of the AndroidManifest.xml file

Intents are passed into the methods that perform component invocation.

The called component can be invoked by two different types of intents. To

show the differences of these types, let consider an example. For instance,

a user wants to choose a picture in an application. The developer of the

application can use an Explicit Intent or an Implicit Intent to invoke a

component that selects a picture. For the first intent type, the developer

realizes picking functionality in the component of his application and calls

this component using the Component Name data field of the explicit intent.

Of course, the developer can invoke a component of other application,

but, in this case, he has to be sure that this application is installed in

the system. Generally, from the developer’s point of view, there is no
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difference between the interactions of components inside one application

or among components of different applications. For the second intent type,

the developer transfers the right to choose the appropriate component to

the operating system. The intent object contains some information in its

Action, Data and Category fields. According to this information, using

Intent Filters the operating system chooses the proper component that

may process the intent. An intent filter defines the ”template” of intents

the component can process. Of course, the same application can define an

intent filter that will process intents from other component.

5.2 Permissions on the Application Level

Permissions are used not only for protecting the access to the system

resources. The developers of third-party applications may also use custom

permissions to guard the access to the components of their applications.

An example of custom permission declaration is shown in Listing 5.1 in

Line 11. The declaration of custom permissions is similar to the one of the

system permissions.

To illustrate the usage of custom permissions let refer to Figure 5.1. The

Application 2 consisting of 3 components wants to protect the access to two

of them: C1 and C2. To achieve this goal the developer of the Application

2 has to declare two permission labels p1, p2 and assign them to protected

components correspondingly. If a developer of the Application 1 wants ot

obtain access to component C1 of the Application 2 she must define that

her app requires permission p1. In this case, the Application 1 receives a

possibility to use the component C1 of the Application 2. If the app has

not specified the required permission, the access to the component guarded

with this permission is prohibited (see the case of the component C2 in

Figure 5.1). Referring back to our example of the AndroidManifest.xml

file in Listing 5.1, the activity TestActivity is protected with the per-

mission com.testpackage.permission.mypermission, which is declared

in the same application manifest file. If another application wants to use
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the functionality provided by TestActivity, it must request the usage of

this permission, similarly to how it is done in Line 16.

Application 1

Application 2

C1: p1

C2: p2

C3

Uses-permission:

p1

Figure 5.1: Permission enforcement to guard the components of third-party applications

ActivityManagerService is responsible for the invocation of the com-

ponents of application. To enforce the security of app components, in the

framework methods (e.g., startActivity described in Section 5.1), which

are used to invoke the components, the special hooks are placed. These

hooks check if an application has permission to call the component. These

checks end in PackageManagerServer class with the checkUidPermission

method (see Listing 4.6). Thus, the actual permission enforcement hap-

pens on the Application Framework level that is considered as a trusted

part of the Android operating system. Hence, the check cannot be by-

passed by applications. More information about how the components are

called and permission checks can be found in [8].
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Chapter 6

Other topics on Android security

In this chapter we consider other topics related to Android security that

do not directly belong to any topics already considered.

6.1 Application Signing Process

Android applications are spread across the devices in the form of Android

Application Package files (.apk files). As programs for this platform are

mainly written in Java, not surprisingly this format has a lot in common

with the Java packaging format – jar (Java ARchive), which is used to

combine code, resource and metadata (from an optional META-INF direc-

tory) files into one file using the zip archiving algorithm. The META-

INF directory stores package and extension configuration data, including

security, versioning, extension and services [5]. Basically, in the case of

Android the apkbuilder tool zips together built project files [1] and then

this archive is signed with the standard Java utility jarsigner [6]. During

the application signing process jarsigner creates the META-INF directory

that usually contains the following files in case of Android: manifest file

(MANIFEST.MF), signature files (with .SF extension) and signature block

files (.RSA or .DSA).

The manifest file (MANIFEST.MF) consists of the main attributes sec-

tion and per-entry attributes, one entry for each file contained in the un-

signed apk. These per-entry attributes store information about the file
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name and a digest of the file contents encoded using the base64 format.

On Android, the SHA1 algorithm is used to compute the digest. An excerpt

from a manifest file is presented in Listing 6.1.

1 Manifest−Vers ion : 1 . 0

2 Created−By : 1 . 6 . 0 41 (Sun Microsystems Inc . )

3

4 Name : r e s / layout /main . xml

5 SHA1−Digest : NJ1YLN3mBEKTPibVXbFO8eRCAr8=

6

7 Name : AndroidManifest . xml

8 SHA1−Digest : wBoSXxhOQ2LR/pJY7Bczu1sWLy4=

Listing 6.1: An excerpt from a manifest file

The content of the signature file (.SF), which contains data to be singed,

is similar to the one of MANIFEST.MF. An example of this file is pre-

sented in Listing 6.2. Main section contains a digest of the main attributes

(SHA1-Digest-Manifest-Main-Attributes) and a digest of the content

(SHA1-Digest-Manifest) of the manifest file. Per-entry section contains

digests of entries in the manifest file with the corresponding file names.

1 Signature−Vers ion : 1 . 0

2 SHA1−Digest−Manifest−Main−Att r ibute s : n l /DtR972nRpjey6ocvNKvmjvw8=

3 Created−By : 1 . 6 . 0 41 (Sun Microsystems Inc . )

4 SHA1−Digest−Manifest : Ej5guqx3DYaOLOm3Kh89ddgEJW4=

5

6 Name : r e s / layout /main . xml

7 SHA1−Digest : Z871jZHrhRKHDaGf2K4p4fKgztk=

8

9 Name : AndroidManifest . xml

10 SHA1−Digest : hQtlGk+tKFLSXufjNaTwd9qd4Cw=

11 . . .

Listing 6.2: An excerpt from a signature file

The last part in the chain is the signature block file (.DSA or .RSA).

This binary file contains a signed version of the signature file; it has the

same name as the corresponding .SF file. Depending on the used algorithm

(RSA or DSA) it has different extensions.

It is possible to sign the same apk file with several different certificates.

In this case in the META-INF directory there will be several .SF and .DSA
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or .RSA files (their number will be equal to the number of times the appli-

cation was signed).

6.1.1 App Signature Check in Android

Most of Android apps are sealed with a developer-signed certificate (notice

that for Android “certificate” and “signature” can be used interchange-

ably). This certificate is used for assurance that the code of the original

application and its update come from the same place, and to establish

trust relationships between applications of the same developer. To perform

this check Android simply compares binary representations of certificates,

which were used to sign an application and its update (in the first case)

and collaborating applications (in the second).

This check of certificates is implemented in PackageManagerService

by the method int compareSignatures(Signature[] s1, Signature[]

s2), which code is presented in Listing 6.3. In the previous section we

noted that in Android it is possible to sign the same application with sev-

eral different certificates. This explains why the method takes two arrays

of signatures as parameters. Despite the fact that this method takes the

central place in the Android security provision, its behaviour strongly de-

pends on the version of the platform. In the newer versions (starting from

Android 2.2) this method compares two arrays of Signature, and if both

arrays are not equal to null returns SIGNATURE MATCH value if all s2 sig-

natures are contained in s1, and SIGNATURE NO MATCH otherwise. Before

the version 2.2, this method checked if array s1 is contained in s2. That

behaviour allowed the system to install upgrades even if they had been

signed only with a subset of certificates of the original application [2].

Trust relationships between applications of the same developer are re-

quired in several cases. The first case is connected with the permissions

of the levels signature and signatureOrSystem. To use the functional-

ity protected with the permissions of these levels, the packages declaring

the permission and requesting it must be signed with the same set of cer-
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1 s t a t i c i n t compareSignatures ( S ignature [ ] s1 , S ignature [ ] s2 ) {
2 i f ( s1 == nu l l ) {
3 r e turn s2 == nu l l

4 ? PackageManager .SIGNATURE NEITHER SIGNED

5 : PackageManager .SIGNATURE FIRST NOT SIGNED;

6 }
7 i f ( s2 == nu l l ) {
8 r e turn PackageManager .SIGNATURE SECOND NOT SIGNED;

9 }
10 HashSet<Signature> s e t1 = new HashSet<Signature >() ;

11 f o r ( S ignature s i g : s1 ) {
12 s e t1 . add ( s i g ) ;

13 }
14 HashSet<Signature> s e t2 = new HashSet<Signature >() ;

15 f o r ( S ignature s i g : s2 ) {
16 s e t2 . add ( s i g ) ;

17 }
18 // Make sure s2 conta in s a l l s i g na tu r e s in s1 .

19 i f ( s e t1 . equa l s ( s e t2 ) ) {
20 r e turn PackageManager .SIGNATUREMATCH;

21 }
22 r e turn PackageManager .SIGNATURENOMATCH;

23 }

Listing 6.3: The method compareSignatures of PackageManagerService

tificates. The second case related to Android’s capability to run different

applications with the same UID or even in the same Linux process. In this

case, applications requested such behavior must be signed with the same

signature.
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