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Abstract—Current smartphone systems allow the user to use
only marginally contextual information to specify the behaviour
of the applications: this hinders the wide adoption of this
technology to its full potential. In this paper, we fill this gap
by proposing CREPE, a fine-grained Context-Related Policy
Enforcement System for Android. While the concept of context-
related access control is not new, this is the first work that brings
this concept into the smartphone environment. In particular, in
our work a context can be defined by: the status of variables
sensed by physical (low level) sensors, like time and location;
additional processing on these data via software (high level)
sensors; or particular interactions with the users or third parties.
CREPE allows context-related policies to be set (even at runtime)
by both the user and authorized third parties locally (via
an application) or remotely (via SMS, MMS, Bluetooth, and
QR-code). A thorough set of experiments shows that our full
implementation of CREPE has a negligible overhead in terms of
energy consumption, time, and storage, making our system ready
for a production environment.

Index Terms—Android Security, Smartphone Security, Context
Policy.

I. INTRODUCTION

N the world, there is an average of almost one mobile

telephone per human being (with small differences between
developed and developing countries). The computational capa-
bilities of mobile phones have increased significantly in the last
years, leading to so called smartphones. These devices (just
“phones” in this paper) can actually run applications in such
a way that is similar to desktop computers. However, because
of the specific characteristics of smartphones (user mobility
and communication features among others), the security and
privacy of these devices is particularly exposed [1]. These
challenges reduce the users’ confidence and make it more
difficult to adopt this technology to its full potential. To
alleviate this problem, researchers have recently focused on
enhancing phones’ security models and their usability.

One significant challenge in the security of smartphones
is to control the behaviour of applications and services (e.g.
WiFi or Bluetooth). In several smartphone systems the be-
haviour of the applications is completely under the control
of a centralized entity (e.g. once an application is installed,
the user cannot control its behaviour). For example, Apple
has complete control on the applications installed on iPhone
devices. In fact, the only way to install applications onto a
(non rooted) iPhone is by downloading them from the Apple
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App Store. And in turn, in order to appear in the App Store,
an application has to pass an Apple vetting procedure.

However, even in systems where the user can control the
behaviour of the applications, this is still mostly based on
policies per application (non system-wide), and policies are set
only at installation time. For instance, in the J2ME platform
each MIDlet suite uses a JAD (Java Application Descriptor)
file to provide the device at installation time with access
control information. Similarly, in Android [2] an application
developer declares in a manifest file all the permissions that
the application must have, in order for it to access protected
parts of the API and to interact with other applications.
At installation time, these permissions are granted to the
application based on its signature and interaction with the user
[3]. While Android gives more flexibility than J2ME or other
systems (the user is at least notified about the resources that the
application uses), granting permissions all-at-once and only at
installation time is still a coarse-grained control: the user has
no ability to govern how the permissions are exercised after the
installation. As an example, Android does not allow policies
that grant access to a resource only for a fixed number of times,
or only under some particular circumstances. Meanwhile, to
protect users’ privacy, the current security models restrict
trusted third parties’ control over mobile phones. Typically,
only the device manufacturer and the network provider have
control over the smartphone. There are no mechanisms to
allow other authorized parties (e.g. a company that provides a
smartphone to its employee or the private owner) to have full
control over the behaviour of the phone.

Hence, there is a need for a system that will help the
user to enforce the policies she defines, and help her to
comply with the policies specified by authorized third parties.
The following examples can be scenarios for which having a
practical solution might extend the usability of the phone:

« A user might want her Bluetooth interface to be discov-

ered when she is at home or in her office, not otherwise.

e A user might lend her phone to a friend, while the

user does not want her friend to be able to use some
applications or to have certain data available (e.g. SMSs).

« For privacy purposes a user might want to automatically

restrict access to some data under certain conditions.
For example, a weather forecast application might be
prohibited to send out user’s location when she is at home.

« User’s smartphone might be a part of corporate infrastruc-

ture. However, the company wants to control its usage and
the security, e.g. prohibit phone usage during meetings or
forbid certain services when the employee is abroad.

« A smartphone can be used as a context detector compo-



nent, e.g. for fleet management, to associate drivers and
vehicles and know vehicles’ location and conditions.

We observe that currently there is no smartphone system
that is able to handle this behaviour. In particular, there is
no system that incorporates all features at once: definition
and identification of fine-grained and dynamic contexts, policy
enforcement (i.e. make sure that the system is compliant
with the behaviour described by the policy) in a system-wide
manner, acceptance of incoming settings [4], [5] at runtime—
including the verification of the trusted third party sending
management messages.

Contribution. In this work, we fill the exposed gap by
presenting CREPE, a fine-grained Context-Related Policies
Enforcement for Android [6]. This work is developed based
on our previous work [7], in which we presented the idea for
the first time and described a possible architecture and a proof
of concept implementation.

In the current work, we propose a new architectural design
of CREPE, separating our system into several loosely coupled
modules. This separation gives CREPE high flexibility of usage
and openness (to other developers). For example, a context can
be defined as a boolean expression that can take as input: the
data reported by low level physical sensors (e.g. location, time,
temperature, noise, light), processing on these data performed
with high level software sensors (e.g. to determine whether
the user is running, by using data from the accelerometer),
or a particular interaction with authorized third parties. As
for openness, other developers can design (and integrate in
CREPE) new high-level sensors—that might be required to fit
new or very specific needs. For example, a new high level
sensor could be designed to notify CREPE when the phone
has in its neighborhood a fixed number of other devices (e.g.
as an indication that the user is in a crowded place). Also,
parsers for different policy specification languages (in addition
to Ponder [8], the one we already considered) can be easily
integrated in CREPE.

We clarify that in our work we assume the user is not
malicious: she either wants to directly set the policy, or she
wants to obey the policies set by authorized parties (e.g. her
company). Hence, the security threats do not come from the
phone users, but rather from malicious applications installed
on the phone, or from unauthorized third parties that try to
exploit the capability of CREPE to process incoming messages.
Furthermore, we observe that CREPE is a modification of the
Android operating system itself. Hence, removing CREPE is
not just as simple as removing an application, and its removal
would result in a non working system.

We run a thorough set of experiments, whose results show
a negligible overhead in terms of energy, time, and storage.
This proves that our system is ready to be used in a production
environment.

Roadmap. Section 1II gives an overview of the related work
in the area, and describes the Android system. Section III
presents the basic architecture of CREPE, while Section V
discusses the main peculiarities of our CREPE implementation.
Section IV illustrates the language used for the definition of
contexts and policies. Section VI reports on a thorough set of
experiments we run to assess the overheads caused by CREPE.

Finally, Section VII gives some concluding remarks.

II. RELATED WORK

The increasing popularity of smartphones attracts OS de-
signers to mobile platforms. The leaders in this market, such as
Microsoft, Apple, Google, RIM, and Nokia proposed their own
solutions. Moreover, different companies have joined together
in alliances and projects (e.g. OpenMoko [9] and OMTP [10]),
that aim to produce secure and usable mobile devices. The
variety of the producers of mobile OS leads to a variety
of architectural solutions. While one group supplies closed
systems (e.g. Windows Mobile, Apple i0S), where Microsoft
and Apple have complete control on the third-party application
development and distribution, the second group (Google, RIM,
Nokia) provides more open systems, where users have more
control over the third-party applications.

When installing applications on the Apple iPhone, all the
applications receive access to the same set of phone capa-
bilities. At runtime, an application explicitly asks to the user
permission for a particular functionality, e.g. GPS data [11]. A
similar approach is adopted by Microsoft for Windows Phone
7 [12]. The developer has to define which capabilities her
application has access to. During the installation, the system
creates a sandbox which has access only to the specified
capabilities. During the first usage of an application, the user
is explicitly asked to grant access to restricted resources [13].
In general, these closed systems enforce policies, only, at
installation time.

Open systems provide more fine-grained policy enforce-
ment. As an example, the Java MIDP 2.0 security model
restricts the use of a sensitive permission (e.g. network access)
depending on the protection domain the application belongs
to [14]. Similarly, the Symbian system gives different per-
missions to Symbian-signed programs [15]. There have been
proposals to enforce more fine-grained policies at runtime. For
instance, in [16] the authors present a system that allows users
to define permissions for each application.

Among open systems, the most popular operating system is
Android. In this system, during the installation of an applica-
tion the user can agree or disagree with the required permis-
sions. If the user does not want to grant these permissions,
the application will not be installed. The developers of third-
party applications are empowered to use the full capabilities
provided by the system. At the same time, they should request
only the necessary permissions. Otherwise, it is more likely
that the user will not install the application. To help the users
define which sets of permissions can be dangerous, a system
called Kirin [1] was developed. Kirin can warn the user about
an application that may implement dangerous functionality
during the installation of this application.

Due to the lack of access control support at runtime in
Android, several approaches on enforcing fine-grained policies
at runtime have been also proposed [17], [18], [19]. In [17] the
authors propose Saint, an installation- and run-time application
management system for Android [2]. The authors start from
this observation: Android protects the phone from applications
that act maliciously, but provides severely limited infrastruc-



ture for installed applications to protect themselves. Leverag-
ing on this observation, the authors built Saint in order to
allow Android to be able to enforce application policies. Nau-
man et al. [19] propose a context-related policy enforcement
system that can impose: resources-usage constraints that are
determined by the context of a user/application, and resource-
usage constraints that depend on the usage of this resource by
the application. Bai et al. [18] have adopted UCON model to
provide a continuous context-aware usage control framework
for Android. The authors propose the ConUCON tool, which
uses spatial and temporal context information to increase the
user’s privacy and the control of resource usage.

More recent papers [20], [21] concentrate on the protection
of user’s private data. In [20] the proposed system enables
possibilities to limit the access of the installed applications to
data (SMSs, contacts, calendar, location and device ID), and
to the components of the Android OS (access to the Internet
and broadcast intents). This approach is widened in [21]—the
authors provide the user with the ability to define the accuracy
level of the information revealed to the application.

To the best of our knowledge, the first solution to enforce
context-related policies in Android has been proposed in
our previous work [7]. In [7] we described a preliminary
design and implementation of CREPE, and its functional
requirements. In particular, [7] is the first solution with the
ability to enforce fine-grained Context-Related Policies on An-
droid. Differently from Saint [17] (that focuses on application
policies), CREPE aims to enforce fine-grained context-related
policies defined by the user (or other parties). Furthermore,
the policies can be applied also in a system-wide manner,
and can be set on the phones also at runtime from both
users and authorized third parties. Differently from Apex [19]
or other systems like the one in [18] (that focused on the
providing user-centric policies) CREPE provides the ability
to enforce policies from trusted parties (which includes the
user). This implies also an important functionality of CREPE:
the capability to resolve possible conflicts between policies
coming from different (authorized) parties. Moreover, CREPE
can change the policies at runtime (not just at installation time,
as it is for other systems—e.g. Apex).

A. Context-based Access Control Models

Researchers have already shown interest in context-based
access control, even if the meaning of “context” can be very
different (see [22], [23], [24], to cite a few). The concept of
context that we consider in our work is similar to “environment
roles” used in [25], which in turn has been specialized in
[26]: accounting for the specificity of spacial information (e.g.
multi-granularity of the position; spatial relationships that may
exist between spatial elements in space). There are a lot of
other works that uses context information [27], [28], [29],
[30], [31]. The recent examples from the industry have shown
that context aware security is a prominent area of research. For
instance, VMWare [32] is developing a virtualization technol-
ogy that separates personal and corporate parts of smartphone.
Finally, we also note that CREPE shares a common element
with the access control model of web services [33]: where

policies depending on a context might also be specified, when
a proper access control model is provided [34].

In this paper, we have focused on a complete design
and discussion of our approach, together with a thorough
practical evaluation. Thus, we have completely redesigned the
architecture of CREPE, although many functionality remains
the same as in [7].

B. Android Security Overview

We considered Android as reference platform because of its
increasing adoption by manufacturers, developers, users, and
researchers [1], [3], [17]. In this section, we give an overview
of the Android security model [2], [3].

Android combines two levels of security [3], [35]: at Linux
system level and at application framework level. At the former,
each application is executed in a separate user process, within
its own isolated address space (sandboxing). At the latter, as
discussed in [3] Android provides Mandatory Access Control
(MAC) [36] to application components, through the Inter-
Component Communication (ICC) reference monitor. In fact,
as opposed to discretionary access control, a component is
not capable of passing its permission to other components.
Protected features are assigned with unique security labels—
permissions. To make use of protected features, the developer
of an application must declare the required permissions in
its package manifest file—AndroidManifest.xml. The
protection level can be normal (these permissions are granted
automatically), dangerous (the user has to explicitly grant
these permissions), signature (calling and called applications
must be signed with the same key) or signature or system
(the applications should be signed with the system key).
When the user has the chance to take a decision (protection
case: dangerous), she has only two choices: either grant the
requested permissions or refuse to do this. In the latter case,
the application will not be installed. At application runtime,
Android has no mechanism to modify permissions.

We observe that the current Android security model cannot
serve our purpose of enforcing fine-grained context-related
security policies. In fact, there are no mechanisms to enforce
or modify policies at application run-time.

III. CREPE

In this section, we describe the access control model,
the architecture, the components, and the main algorithms
of CREPE. More precisely, in Section III-A we present the
access control model of CREPE, in Section III-B we give
an overview of the CREPE system. In Section III-C we
consider its system architecture and the main building blocks.
After that, we discuss Context Detection peculiarities in Sec-
tion III-D. Section III-E explains our policy management and
the fundamental algorithms of CREPE.

A. CRéPE Access Control Model

Before discussing the implementation challenges of our
proposal in the Android system, we provide here the Access
Control Model of CREPE. The model is illustrated in Figure



1, using standard concepts from XACML [37], [38]. Also,
the model in Figure 1 can be considered as an instance of
the UCON model [5], where obligations are enforced by the
Action Executors, and the conditions are set by the Context
Detector. We observe that while our model has similarities
with several access control models involving contexts (e.g.
[34]), in our model policies are associated to contexts, and the
dynamic activation/deactivation of contexts (that determines
which policies have to be enforced) is detected automatically
by the sensors present in every modern smartphone. Over-
coming existing limitations of Android, our model allows to
change and/or adapt policies also at application run-time and
not only at installation time. Furthermore, CREPE supports
dynamic policy management, thus at any time the adminis-
trator can set, delete and modify new contexts/policies at run-
time. If such changes require the system to invoke/stop existing
service/application (e.g., disable internet while entering in the
meeting room not only require to prevent new connections
but also require to shut down existing connections), this is
supported as well by the model.
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Fig. 1. CREPE Access Control Model.

In particular, there could be three different flows at run-
time, each identified by the different labeling of the arrows.
The letters a, b, ¢, and d show the processing flow of a run-
time access request: the request is intercepted (arrow a) by
the Policy Enforcement Point (PEP); this, in turn asks (b) the
Policy Decision Point (PDP) whether the request should be
granted; based on the answer (c¢), the request will be granted
(d) or not. The roman numbers /, and I/ show the flow of
processing due to administrative commands. In fact, authorized
parties can set contexts and associated policies in the system
(arrow 1). As a consequence of this, the Policy Administration
Point (PAP), notifies the Context Detector that the newly set
contexts need to be monitored (/). The arabic numbers 1, 2, 3,
4, and 5 indicate the flow of processing initiated by context be-
coming active/non active. The Context Detector continuously
monitors the environment via phone sensors (arrow 1). As
soon as a registered context (set as described before) becomes
active/non active, the Context Detector notifies the PAP (2) that
has to activate/deactivate the new policy (composed by access
control rules plus obligations). From all the contexts that are
currently active, the PAP decides (e.g. resolving conflicts) the
set of rules that need to be enforced. Hence, this information is
passed on to the PDP (3). PDP stores the information related
to access control, while forwards to the PEP the obligations
(4). PEP, in turn, is in charge to take the actions specified by
the obligation policies, this is done via a component that we
call Action Executor (5).

B. Overview

CREPE acts as a security mechanism in addition to the
standard Android security mechanisms. It allows users and
other predefined trusted parties to define context-related poli-
cies, which can be installed, updated and applied also system-
wide at runtime. Alternatively, these policies can be applied
in a fine-grained manner, e.g. for each application. A context-
related policy is composed by two different type of policies:

« (i) an access control policy—composed of access rules;

« (ii) an obligation policy [5], [39]—that specifies actions

(i.e. start or stop an application; activate or disable a
system resource, like the camera).

Since there could be many policies and context providers,
it is possible that several contexts fulfil current conditions (i.e.
“being in Italy” and “being in Trento”). We call these contexts
as Active Contexts, and the policies corresponding to these
contexts as Active Policies. To resolve possible conflicts that
may raise in the access control policies, we have introduced
the Union and Conflict Resolution (UCR) function, which is
discussed in Section III-E. The result of this function is the
resolved union of active policies called the Currently Enforced
Policy (CEP).

It is worth noting that ActionExecutor allows CREPE to
enforce ongoing Obligations [5], e.g. pause downloading when
entering in a meeting room where connectivity is not allowed.

C. Architecture

CREPE is implemented as a modification of Android. In
fact, it consists of its own components integrated in the
Android stack, as well as modified components of the Android
Framework. The architecture of CREPE is summarized in
Figure 2, where dashed boxes and underlined names clarify
the mapping with the model depicted in Figure 1.
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Fig. 2. CREPE Architecture: steps labeled with numbers represent the system
management procedure; steps labeled with letters represent enforcement
procedure.

There are two main entry points for CREPE policies: Local-
Administrator and RemoteAdministrator. LocalAdministrator
is an application by means of which the owner of the device



can manage CREPE via a GUI. RemoteAdministrator allows
authorized third parties to manage CREPE remotely, using
SMS, MMS, Bluetooth, and QR-code (steps 1 and 2 in Figure
2). Once management messages are in the system, they are
parsed by Parser (Step 3), which is partially implemented as
a standalone application. In fact, the component of the Parser
that actually parses policies can be easily replaced, to let
our system understand policies defined in different languages.
As shown in Figure 2, all these components that allow the
administration of CREPE correspond to the Admin component
in the model described in Figure 1.

CRePEManagerService is a central component of our sys-
tem (and corresponds to the PAP of the model in Figure 1).
It is responsible for general system management. It receives a
policy with an associated context (Step 4), stores them into the
PolicyAndContextDB database, and asks ContextDetector to
start monitoring (Step 5) the received context (ContextDetector
is described in Section III-D). If ContextDetector detects (Step
6) that a context is activated or deactivated, it notifies CRePE-
ManagerService about this (Step 7). CRePEManagerService
calculates the Currently Enforced Policy (CEP) that regulates
access control, and loads it into ActiveRulesManager (Step 8).

For the enforcement procedure, the first thing to be noticed
is that when a policy becomes active, ActiveRulesManager
(which correspond to the PDP of the model in Figure 1)
notifies the CRePEReferenceMonitor (the PEP) about the
actions specified by the activated obligation policy. A specific
component within CRePEReferenceMonitor, ActionExecutor,
is in charge to perform all the required actions. During system
operation, when a subject tries to access an object, CRePERef-
erenceMonitor intercepts this call (Step a), and checks if the
subject can access the object, according to CEP loaded into
ActiveRulesManager (steps b and c). If the access is not al-
lowed, CRePEReferenceMonitor prohibits further interaction.
Otherwise, CRePEReferenceMonitor simply passes the call to
the standard Android Permission Checking mechanism (Step
d).

D. Context Detection

With CREPE it is possible to specify the behaviour of a
phone, depending on its current context. In particular, the
behaviour is specified by couples < C,P >, where C is a
context, and P is the policy (including access control rules
and actions) associated with C. A context C can be active
or inactive (depending on whether the conditions that define
the context are satisfied). When the context C is active,
the corresponding policy P is also active, i.e. the behaviour
specified by P is enforced by CREPE. At any time ¢, n couples
of contexts and policies can be stored in CREPE (< Cy,P; >,
..., <Cy,, P, >). At the same time, a subset of n’ <n of these
contexts and policies can be active. Furthermore, we underline
that CREPE does not pose any restriction on the definition of
two different contexts, e.g. a context can be also subsumed by
another context.

CREPE supports both physical contexts (i.e. location, time,
online), which are associated to physical sensors (i.e. GPS,
clock, Bluetooth, etc.), and logical contexts, which are de-
fined by functions over physical sensors. Examples of logical

sensors are those that tell whether “the user is running in an
open space” (defined using the two physical sensors, location
and accelerometer), or whether the user answering the phone
call is authorized to do so [40].

Contexts are defined as boolean expressions over physical
and logical sensors. ContextDetector contains those expres-
sions, and checks when they are satisfied. When a boolean
expression becomes true, ContextDetector notifies CRePE-
ManagerService that the corresponding context is activated.
CREPE will hence enforce the corresponding policy (see Sec-
tion III-E3). In our architecture, ContextDetector is decoupled
from the core of CREPE. That is, ContextDetector does not
need to know anything about policies. Hence, it is possible to
develop this component independently from the other CREPE
components, or to plug other context detector components into
CREPE (e.g. ContextDroid [41]).

E. Policy Management

In this section, we describe the main concepts and the
behaviour of CREPE with respect to policy management.

1) Policies, Rules, Actions: First, we introduce the concept
of a policy and a rule. We can think of a policy P as
a matrix (Figure 3), where the indexes of the rows are
Subjects S (i.e. applications) and the indexes of the columns
are Objects O (i.e. applications, and system resources like
camera and Bluetooth interface). Within the matrix, the rule
R =< Access/Deny, Priority > corresponding to the subject S
and the object O is identified as P(S,0) = R. A rule specifies:
an access mode, which is whether the corresponding subject
is allowed or denied to access to the corresponding object; and
a priority, which is a number used to resolve conflicts when
colliding rules apply to the same combination of a subject
and an object. A context policy also includes an obligation
policy to specify actions. The obligation policy can be seen
as a simple vector of objects (not shown in the picture): for
each object the action might specify to start or stop the object
(i.e. the application or system resource corresponding to the
object index).

Each context (and its corresponding policy, made of access
control rules and actions) is defined by an authorized entity.
We refer to this entity also as the owner of the context (policy).
The owner can assign to each single rule or action a priority
number. In particular, each owner has an associated maximum
priority number: in her rules and actions, she can specify a
priority that is at most equal to her assigned maximum priority.
When a policy is installed on the phone, CREPE checks that
this constraint is not violated. CREPE first verifies the validity
of the certificate of the owner: the certificate includes the
identity, the public key, and the maximum priority number, all
these signed with the key of the certification authority. Then,
CREPE checks that all the priority numbers in the specified
rules and actions are at most equal to the max priority number
stated in the certificate.

2) Policies Activation and Deactivation: When a context
(and its corresponding policy P) becomes active, CREPE has
to perform some operations. Protocol 1 describes the procedure
that runs when a new policy P becomes active, assuming



CEP is the currently enforced policy. Basically, CREPE has to
integrate P in CEP. This is done by building a list of policies
(Protocol 1, Line 2)—where CEP is the first element of the
list—, and invoking the UCR function (Line 3) on that list.
How the UCR function works will be explained later.

Protocol 1 Activate(P)

1: Add P in ActivePyiy \\ ActivePyy is the list of all active policies
2: TempPjy = < CEP,P > \\ CEP is the first element of TempP;;,
3: CEP + UCR(TempPyiy))

When a context (and its corresponding policy) becomes
inactive, CREPE basically has to recompute CEP based on
the policies that are still active. This is done as described in
Protocol 2, again making use of the UCR function. We note
that, differently from the activation scenario, in this protocol
the UCR function is called (Protocol 2, Line 2) on the list of
all the policies that remain active after removing the one just
deactivated (Line 1).

Protocol 2 Deactivate(P)

1: Remove P from ActiveP;;y
2: CEP < UCR(ActivePyiy)

3) Defining the Currently Enforced Policy (CEP): Each
context has an associated policy. However: 1) several contexts
might be active at the same time; 2) policies might specify
conflicting rules (e.g. a policy allows a subject to access
a given object, while another policy does not allow this).
Hence, CREPE has to enforce a policy that is the result of
the union of all the policies (Py,...,Py) corresponding to all
active contexts. Meanwhile, all conflicts among these policies
have to be solved. We refer to the resulting policy as the
Currently Enforced Policy (CEP). The computation of CEP
is done by the Union and Conflict Resolution (UCR) function,
as illustrated in Figure 4.

Active Policies
Policy P

o Pl e
01|02 ...| Oj] ... |On H—J
s Union and
o Conflict
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g5 - function
A ( (UCR)
Sm ) Currently
. Enforced
Rj j=<Access/Deny, Policy (CEP)
Priority>
Fig. 3. Policy and Rules. Fig. 4.  Currently Enforced Policy
(CEP).

In CREPE, we implemented the UCR function as described
in Protocol 3. First of all, UCR initializes CEP as the first
policy element in the list (Protocol 3, Line 2). Then, it adds to
CEP subjects and objects that are present in other policies but
not already in CEP (Protocol 3, Lines 4-15). After this, CEP
is filled. This is done using the ConflictResolution function
(Protocol 3, Line 19), which takes as an input a set of rules
(referring to the same combination of subject and object; see

Line 18) and computes the rule that is the outcome of the
resolution of all the rules in the set.

Protocol 3 UCR(P);y)

It Piy... . Py < Plige

2: CEP + P,

3: \\ Add indexes for Subjects and Objects in CEP
4: for all P, € P,,...,Py do

5: for all S € Subjects(P;) do

6: if S ¢ Subjects(CEP) then
7. Add S in CEP

8: end if

9: end forall

10: for all O € Objects(P;) do
11 if O ¢ Objects(CEP) then
12: Add O in CEP

13: end if

14: end forall

15: end forall

16: \\ Set the rules for CEP

17: for all (S,0) € CEP do

18: R+ UPi(S,0)

19: CEP(S,0) < ConflictResolution(R.)
20: end forall

Protocol 4 describes how ConflictResolution works with
respect to a set R of (potentially) conflicting rules. We
assume that each policy P that becomes active is processed
independently from the others, in order to insert its rules in the
Currently Enforced Policy (CEP). This protocol first selects
the rules with the highest priority (Protocol 4, Lines 2-3)—
hence, following the principle of least privilege. Thus, if there
are several rules with the same highest priority number, it
checks if there is among them a deny rule (Protocol 4, Line
4). In this case, it returns a deny rule (Line 5). Otherwise, it
returns an allow rule (Line 7).

Protocol 4 ConflictResolution(R)

I: R, . Ry« R

2: max_priority = Max(priority;) \\ R; =< access;, priority; >
3: R/=Select R; € R with priority;=max_priority

4: if 3 R; € R’ such that access;=‘deny’ then

5: return R =< max_priority,deny >
6
7
8

: else
return R =< max_priority,allow >
: end if

Concluding, both Activate and Deactivate (Protocol 1 and
2, respectively) use UCR (Protocol 3), which in turn uses
ConflictResolution (Protocol 4). As a result, the compu-
tation and storage complexity of Activare(P) (as well as
Deactivate(P)) is O(|ActivePyigx| - |S|-]0]), i.e. it depends on
three key factors: the number of active policies, the number of
subjects, and the number of objects in the system—when the
procedure is called. Since all these three variables are bounded
by small constants in practical systems, the computation time
and storage is negligible, as confirmed by our experiments
(Section VI-B).

IV. CREPE LANGUAGE

In this section, we describe the incoming messages that
CREPE can handle. No matter the way a message comes
into the phone (e.g. via SMS or MMS), after the system
opens the outermost packet (e.g. the one for handling the



SMS), it obtains what we call the CREPE packet. This packet
is specified using XML. The format of a CREPE packet is
shown in Figure 5, where type specifies whether the packet
is referred to:

(i) the specification of a context together with its associated
policy (type=policy+context). Both are stored in
the CREPE database. The policy is activated/deactivated
depending on the status of the corresponding context.

(ii) a policy specification (policy). The reason for this type

of message is to get a policy into the phone. The policy

is not associated to a context: the only way to activate

(or deactivate) this policy is via commands.

a CREPE command (command): i.e., an instruction re-

ferred to policies or CREPE database (commands are

described in Section IV-C).

a command with a policy (command+policy). In this

case, the policy is sent together with the command of

activating it.

(iii)

@iv)

In Figure 5, CONTEXT_DEFINITION and
POLICY_DEFINITION are placeholders for  the
definition of a context and a policy, respectively. Finally,
SIGNATURE_STRING represents the signature of the sender
of the message. CERTIFICATE_STRING represents the
certificate of the sender (it can be presented as a whole, or
just as the ID of a certificate that is in the proper cache).

A. Context Specification

A context is defined via a simple boolean expression (AND,
OR, NOT), with mathematical comparisons (<, >, =, | =) in-
volving objects that refer to sensors (which can output boolean
value or real numbers). For example, the context defined as
(Time>8) AND (Time<16)AND (isRunning=True) be-
comes active if the user is running between 8am and 4pm.

B. Policy Specification

In order to be compatible with the current standards of
policy specification, we implemented a policy parser for (a
subset of) the Ponder language [4], [S]. The parser is designed
as an independent component: CREPE can be easily extended
to understand other policy specifications, just by installing a
proper parser. Ponder is a declarative, object oriented language
for specifying security and management policies. In particular,
it allows general security policies to be specified as a set
of rules. Hence, we found Ponder appropriate to CREPE
for a simple subject/object specification. Furthermore, Ponder
also support usage control policies [5] and obligations that
we need to specify actions (e.g. close an application, or
start another one). In Figure 6, we report an example of
the specification of a policy (i.e. a possible substitution of
POLICY_DEFINITION placeholder of Figure 5). In this
example, the policy consists of only two rules: the first one
allows all the subjects in CEP to access the Internet (this rule
has priority 11); the second rule forbids the music application
to use the Bluetooth interface (this rule is with priority 10).

<?xml version="1.0"
encoding="UTF-8’ ?>
<crepepkt type=POLICY_TYPE>
<context name=CTXNAME>
CONTEXT_DEFINITION
</context>
<policy>
POLICY_DEFINITION
</policy>
<signature>
SIGNATURE_STRING
</signature>

<policy>
auth my_policy_id_string[+]{
subject x;
object android.permission
.INTERNET;
action allow;
priority 11;
subject com.android.music;
object android.permission
.BLUETOOTH;
action deny;

<certificate> priority 10;
CERTIFICATE_STRING }
</certificate> </policy>
<crepepacket>

Fig. 6. Policy example.
Fig. 5. XML message example.

C. CRéPE commands

A command is a self contained instruction that is sent
to the phone. CREPE supports the following commands to
handle policies: ACTIVATE <POLICY_ID>, DEACTIVATE
<POLICY_ID>,and DEL <POLICY_ID>. They can be used
to activate, deactivate, and delete the policy specified by
POLICY_1ID, respectively. The policy itself can be either:
(i) already in the system, or (ii) come together with the
message that contains the command itself. In the latter case,
POLICY_DEFINITION component on the received message
is also filled. Finally, DEL « can be used to reset CREPE, i.e.
reset CEP, and the Policy & Context database.

V. IMPLEMENTATION

In this section, we describe the most important imple-
mentation details of CREPE, which is a modification of the
Android OS. The entire system is contained in 4,830 lines
of code, added to the base Android system (also referred to
as stock Android), in addition to changes to existing Android
system components. In particular, our code is based on the
standard AOSP (Android Open Source Project) [42] which we
forked off in December 2010. CREPE implementation impacts
system services, framework data structures, and system appli-
cations. For the policy-parsing functionality we have ported
the ANTLR Java Runtime [43] to Android. The system is
available for download at [6].

A. CRéPE components

CREPE operates on each of the three levels of abstraction of
the Android software stack (see Figure 2): the User Level, the
Framework Level, and the Kernel Level (for Internet access
regulation, not shown in the figure), with the bulk of logic
in the framework. The system depends on a few base data
structures that must be protected from all processes except the
system process. One of these data structures is the CREPE
central database, which is managed (as explained later) by
the CRePEDatabaseManager component. We make use of
standard Unix-like access permissions to protect this SQLite
database file. Another relevant data structure is the cache of
certificates. During the boot of the Android Runtime, we create
a /data/crepe directory to hold our data structures and set
appropriate permissions, so that only the system_server
process can read/write this directory.



CRePEManagerService: (also named CMS; it works
at Framework Level). CMS is the core of the system. It
is responsible for the orchestration of all tasks of CREPE.
CMS encapsulates the database manager (which is the only
component that talks to the CREPE database described earlier)
and the access rules matrix. It serves as a callback point for
context detection. Finally, it also contains the code for the
CREPE permission check which is hooked from the Activity
Manager Service. All policy resolution algorithms to calculate
CEP are contained here.

ContextDetector: (Framework Level). This component is
responsible for context detection. CMS registers for callbacks
from ContextDetector. The responsibility of this component is
to notify CMS when a particular context is activated or deacti-
vated. ContextDetector combines inputs from several sensors,
which can be physical sensors (time, GPS, accelerometer,
orientation) as well as logical sensors (e.g. the one that detects
whether a user is running).

Authenticator: (Framework Level). This component per-
forms all cryptographic operations required by CREPE, e.g.
the certificate and signature verification for commands coming
from third parties. We support X.509 format certificates.
The Authenticator component works in co-ordination with
CertificateCache, which caches the certificates. This behaviour
results in a smaller size of incoming commands: if a corre-
sponding certificate is already in the cache it does not need to
be sent together with the command.

PonderPolicyParser: (User Level). We have imple-
mented a parser for a small variation of the Ponder Policy
Specification Language [8]. It resides in a service exposed
by an APK (android package). The parser must register itself
with CMS. With this mechanism, we have a flexible solution:
it is possible to make the system understand a totally different
policy language just by installing a proper APK.

CrepeReaper: (Framework Level). CrepeReaper is re-
sponsible for shutting down the processes in accordance with
currently active policies. In particular, we first check if the
process is in background (i.e. it is not at the top of the
Activity Stack). If it is so, the process will be just killed.
Otherwise (if the process is the one in foreground), we
launch a “decoy” activity which forces the previous activity
to be pushed to run in background. This, in turn, forces the
execution of onPause () in the Activity lifecycle, which
gives developers a chance to gracefully save the process state.
We then terminate the process and the “decoy” as well.

CRePEIPTables: (Kernel Level). It communicates with
iptables (userspace Linux application program), which in
turn manages the netfilter modules. CRePEIPTables is
hence used to setup firewall rules for network access.

B. Access Regulation

We place the hook for CREPE checks in
the regular Android check. The public method
checkPermission (Permission, ProcessID,

UserID) inside ActivityManagerService is the
only public entry point for all permissions checking.
Inside checkPermission method, and before the logic

of the Android permission check, we invoke our own
checkCrepePermission. If the particular operation is
allowed by CEP, the system performs a normal Android
permission check. We implemented the access matrix as
a Hash Map, which gives us an efficient access time (just
constant in most cases) to a particular (subject, object)
combination. In the following, we give some details how the
access is regulated for specific objects.

Applications can act as subjects and objects in our model.
When an application acts as a Subject, we make use of Binder
API to discover its UID (i.e. the UID of the caller process).
An application acts as an Object when it is to be started.
During the installation and reinstallation of an application it
can change the UID. For this reason, in our policies we use
package names, which are unique across the system. During
the uninstallation of an applications, we remove the row and
the column of the UID corresponding to our application from
CEP (we can do this using the function that transforms a
package name into the UID). During the installation of the
application we reset CEP and run the UCR function for all
currently active policies.

Restricting access to the Internet in the Android framework
is done through permissions which control whether a process
is part of the inet group. In fact, only applications that are
included into inet Linux group (granted with permission
android.permission.Internet) have access to the
Internet. This cannot be changed at runtime. To create/remove
rules at runtime, based on UIDs to drop or to forward packets,
we use IPTables (based on netfilter). For Bluetooth,
Permission check hooks are placed in BluetoothSocket
and BluetoothServerSocket methods, which at first
consult with CEP before establishing any connections. Re-
sources protected by Android permissions (like the camera,
the microphone, or application components) are also protected
by Android permissions—these permissions strings acts as
Objects in our system.

C. System Management

In this section we describe how to manage CREPE. In
particular, this can be done both locally and remotely by all
the authorized parties, including the user.

1) Local management: Local management is done via the
LocalAdministrator component. It includes a GUI to create
new policies and activate/deactivate them. With this GUI
(whose screenshots are not reported for space limitation) the
user can define a context and its associated policy, i.e. a set of
rules. For each rule, the user can specify: subject (including
“*” ie. any) and object involved, rule type (Allow/Deny),
and Priority number. The user can also manually activate or
deactivate policies already defined on the phone. Deletion
and modification is also supported. While in the current
implementation the context (e.g. a location) must be defined
via a textual interface specifying a boolean expression (e.g.
with Latitude, and Longitude variables), we are working to
make the specification of the area more user friendly, like
drawing an area on a map. Access to LocalAdministrator
is protected via a password—which is stored in the CREPE
central database.



2) Remote management: The trust architecture for remote
management (via messages sent to the device) is done via
a Public Key Infrastructure (PKI). An incoming message for
CREPE has to come with the certificate of the sender. A certifi-
cate can be transmitted in-band or just as an ID (corresponding
to a cached certificate). All certificates should be in the X.509
format. We use standard Java APIs to manipulate and verify
certificates. The CA certificate is embedded in the system
image at build time. All other certificates are cached in the
/data/crepe/certificates directory. The algorithm
used for signature is SHA1 with RSA and a 2048-bit RSA
public key. For all the algorithms, we use the BouncyCastle
APIs—as also done by Android itself.

Messages can be sent as SMS, over Bluetooth and as QR-
codes.

VI. SYSTEM EVALUATION

This section is devoted to the evaluation of CREPE. We
first discuss the effectiveness of its security (Section VI-A).
Then, we report and discuss the experimental evaluation of its
efficiency! (Section VI-B).

A. Effectiveness: Security

We recall that we assume the user is non malicious, while
the security threats for our system come from: (i) malicious
applications; (ii) or even from unauthorized third parties that
try to exploit the communication system of CREPE. Although
CREPE could be extended to enforce security against a mali-
cious phone user (e.g. based on solutions like ARM TrustZone
[44]), this is out of the scope of this work.

Considering malicious applications, we observe that CREPE
does not reduce the security of Android, though it can improve
its security significantly in several cases. We first discuss why
CREPE does not reduce the security of Android. In fact, for
each requested access to an application or system service,
CREPE only adds further checks, i.e. its own checks that
depend on the active CREPE policies. Each access that is not
denied by CREPE is passed on to the Android Permission
Check and not influenced by CREPE anymore. As a result,
CREPE can only reduce the number of accesses allowed, but
not reduce the security of stock Android, because its checks
on actually executed actions occurs in any case.

We observe that CREPE can also improve the security of
stock Android in several cases. For instance, let us consider
a recent Android vulnerability [45]: an intruder in public
WiFi networks can eavesdrop and then use for two weeks
an authorisation token used by a number of applications. With
CREPE this problem could have been solved, by sending to
the phone a policy restricting the use of these applications on
their network. As another example of security improvement,
we observe that the current delegation mechanism of Android
has a weakness that CREPE fixes to some extent. In particular,
we consider the following to be a weakness. An application
App is allowed to access a resource (e.g. to use the Bluetooth
service). App defines a permission Perm for its component

IResults data can be found at http://www.crepedroid.org/eval_raw.zip.

App; (that actually uses the resource). App defines Perm with
normal level which is automatically granted without asking
for explicit approval from the user. This would imply that any
other application can use the same referred resource, while
the user is not actually aware of this. To some extent, CREPE
helps to prevent this kind of compromise. A CREPE policy
could be defined by the user to limit the access to resources
in some necessary situations. For instance, the user can define
a policy allowing to use Bluetooth only at home or the office,
which are trusted environments (in this case, the context will
be detected by the CREPE ContextDetector component via
the GPS sensor). The policy will be applied system-wide,
irrespective of which application requests access.

Another important observation is that since CREPE has a
modular architecture, the interactions between the components
must be also protected. For this purpose we use standard
Android mechanisms. All exported CREPE components are
protected with permissions with the protection level: signature.
This means that only components and applications signed with
the same key can access the protected components. Thus,
basically only other CREPE components can interact with
these exported components. Therefore, the parts of CREPE
that work at the application level (i.e. LocalAdministator and
Parser) must be also signed with CREPE signature.

The remaining security issue to be discussed is the threat
coming from unauthorized third parties that try to exploit
the communication system of CREPE. We protect the system
from such type of attacks by a PKI system with X.509
certificates. The CREPE system is installed with the certificate
of a root certification authority (CA), e.g. a company will
put its certificate as root authority in the phones given to its
employees. For each incoming message, CREPE checks that
the message is coming either from the CA or from another
entity with a certificate issued by the certification authority
(e.g. a specific department of the company). New authorized
certificates will be stored in the CREPE cache. Certificates
can have an expiration date or can be revoked via a specific
command. Finally, to avoid replay attacks, each sent message
has to carry a time stamp.

B. Efficiency: Overhead

In this section, we report the results of a set of thorough
experiments we run in order to evaluate the design and
implementation of CREPE. In particular, we investigated the
following issues that we believe are fundamental in smart-
phone usage: time overhead (Section VI-B1), energy overhead
(Section VI-B2), and storage overhead (Section VI-B2). For all
the experiments reported in this sections we used the Google
Dev 3 phone (HTC Nexus One).

1) Time Overhead: For all the experiments related to time
overhead, we used a call to System.nanoTime () before
and after the operations to be measured. In particular, we
considered the points where CREPE can add delay.

a) CRéPE permission check: Each time a subject ac-
cesses an object within the set of the “controlled” objects (i.e.
the objects in the CEP matrix, see Section III-E3), CREPE
has to run its check. To understand what is the time over-
head introduced by this CREPE check, we ran the following



experiments. First, we considered a smartphone running stock
Android. We then simulated regular phone usage by having
the phone behave as follows for 120 minutes: at minute 0,
and every ten minutes, the phone started a call (lasting 110
seconds), then started and closed a set of applications (in
order: MMS, Contacts, Gallery, Email, Music, and Calendar).
From this, we obtained a large body of check permission
timing information. We measured the time spent within the
Android check. In particular, we measured the time spent in
checking each specific permission type. Then, we ran a similar
experiment on a Dev 3 phone with CREPE: the time spent
for permission check now including also the CREPE checks.
In this scenario, we ran the experiment for different number
of rules in the system: 0, 15, 30, 45, and 60. In the case
of CREPE installed, we ran all the experiments twice. First,
assuming that CREPE was able to get commands via Bluetooth
(hence turning on the Bluetooth interface every 5 minutes);
then without this functionality. The results of this experiment
are shown in Figures 7(a) and 7(b), for Bluetooth active, and
not active, respectively. To help the comparison, we report the
value for stock Android in both figures.
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Fig. 7. Time overhead for permission check

From these figures, we observe that the time overhead for
both stock Android and CREPE permission check is negligible
and not noticeable by the user, no matter the specific setting.
In the worst case (that is observed for CREPE with 45
rules, and Bluetooth active), the overall time overhead during
120 minutes is less than two seconds. Another important
observation is the following: the time overhead for CREPE
permission check is almost independent from the number of
subjects and objects. We note that this was not the case in
the previous proof-of-concept implementation of CREPE [7].
In fact, in [7] the active rules were organized in a list, hence
requiring a check time overhead linear with the number of
active rules. Current CREPE enforcement is implemented via
a table of active rules (CEP), where lookup is constant.

From both Figure 7(a) and Figure 7(b), we note that the
time overhead is not uniformly increasing with the increase
of the number of rules. In fact, while adding a rule adds
some overhead due to the check of this new rule, this might
also decrease the total overhead. This is due to the following
fact: even a single rule might change the execution path of
the application. For example, let us consider the case of an
application that requests access to a resource (which implies a
permission check), and then it does a lot of operations on that
resource (each operation implying a permission check). If it is
added a new rule that avoid the application to get the resource

in the first place, then all the operations on that resources
will be just skipped (hence, saving all the time overhead for
all the associated permission checks). This motivation is also
supported by the fact that increasing the considered set of
rules, the time spent in a specific permission check decreases
in some cases. For example, let us consider the scenario
without Bluetooth active (Figure 7(b)). If we move from the
setting with 15 rules (x-axis), to the one with 30 rules (which
include the previous 15 rules), the time spent in checking the
READ_CONTACTS permission goes from more than 225ms
(in over 120 minutes of experiment), to some 16ms.

b) Policy activation and deactivation: Each time a policy
is activated (deactivated) as a result of the corresponding
context becoming active (inactive), CREPE needs to update
the CEP matrix. First, we investigated the cost of activation
and deactivation of a policy, assuming no conflicting rules.
We started the experiment with policies P; and P, already
active (P; having 10 rules; P> having 10 rules; P; and P,
not having conflicting rules). Then, we considered a policy
P3 with a number of rules varying from 1 to 40. In none of
these cases there were conflicting rules. For each considered
number of rules for P;, we activated and deactivated policy P;
100 times. We measured the time overhead for each activation
and deactivation. Results (average and standard deviation, s.d.)
are shown in Figure 8(a).

From this figure, we first observe that the time cost of policy
deactivation is higher than the one of policy activation. As
expected, this is due to the mechanism described in Section
ITI-E3. In fact, deactivating a policy implies: 1) re-initialization
of the data structure for CEP; 2) re-activation of all the
policies except the deactivated one. From other experiments
(not shown in Figure 8(a)), we noticed that even when a
single policy is active on the system, the deactivation of this
single policy costs more than its activation (for a policy with
10 rules activation cost some 90ms, while deactivation costs
some 140ms). For the activation, the cost of adding a rule is
the one of a lookup in the table. In the cases when a rule
is already specified for the given combination of a subject
and an object, the cost of conflict resolution should be added.
By implementation, having n active rules the cost for the
deactivation of a rule is equal to the activation of n— 1 rules.
Finally, we also note that the number of rules in the policy
that is deactivated (P3) does not play any role in the cost for
deactivation. Again, this is due to the specific implementation
of the deactivation (i.e. initialization, and re-activation of P;
and P,). Finally, we observe that the number of rules does
not have any significant impact on the time overhead both for
activation and deactivation of a policy.

After the experiment without considering conflicting rules
we investigated the time overhead also in this latter case.
In particular, we considered the starting settings as in the
previous experiment. Given this setting, policy Pz (40 rules)
was considered with a varying number of conflicts (from 1 up
to 20) with policies P; and P,. For each number of conflicting
rules activation and deactivation of P; was done 100 times.
Results (average and standard deviation) are shown in Figure
8(b). Observe that the first point of Figures 8(b) (number of
conflicts = 0) corresponds to the last point of Figure 8(a).
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Fig. 8. Time overhead: CREPE Policy Activation and Deactivation

From Figure 8(b), we observe that again the overhead is
negligible. Also, as observed from the previous experiment
(with no conflicting rules in P3), the overhead for deactivation
is constant (since the deactivated rules do not influence the
deactivation process). Finally, we observe that the activation
time overhead is influenced by the number of conflicting
rules—while remaining negligible.

c) Incoming commands: Here we report on the inves-
tigation of the time overhead to handle incoming messages
intended for CREPE. In particular, we recall that we have
four different types of incoming messages (see Section IV): (i)
Command; (ii) Policy; (iii) Context and Policy; (iv) Command
and Policy. For each message the time overhead is composed
of two elements. The first one is the time to receive the
message—hence it is dependent on the specific technology
used (e.g. Bluetooth or SMS). The second one is the time for
processing the received message. The processing time includes
also: parsing, signature verification, and certificate verification.

In our experiment, we focused on a simple message (Com-
mand type) and a more common and a longer message
(Context and Policy type). For the second type, we also
considered different possible sizes: 15, 30, and 60 rules. For
each of this messages, we sent it 100 times to CREPE, and
measured the time overhead. The results for processing time
are summarized in Figure 9. From the figure, we can observe
that the time overhead for processing is at most 1,264.46ms
(s.d. 1,149.59)— that is, for processing a Context and Policy
message with 60 rules.

2) Energy Overhead: To assess energy overhead we used
the tool described in [46]. We ran several experiments con-
sidering the phone behaviour as described in Section VI-B1
(automatically placing a call and starting few applications
every 10 minutes, over a period of 120 minutes). In particular,
we repeated the experiment 10 times for each of the following:
stock Android, and CREPE for 15 active rules. Figure 10
shows the resulting average for the battery voltage. The battery
starts at 4,150mV in both systems. However, after two hours
of usage, the battery has a voltage of some 4,058mV and
3,950mV, for stock Android and CREPE, respectively. Note
that, as reported by the power tutor tool, these values corre-
spond to a residual battery level of 91.2% and 78.4% after 120
minutes of usage, for stock Android and CREPE, respectively.
Observe that this percentage does not directly correspond to
the residual mV, since, for example, the minimum amount of
mV required for the phone to work is >>0.

With regard to the energy consumption for the context
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detection, we observe that the main impact comes from the
technology (e.g. GPS) used for detecting the context. In
particular, checking the time variable is not noticeable in terms
of decreasing battery level. Also the energy required by the
Bluetooth interface is quite small: we observed a contribution
to the battery consumption of less than 1%. However, when the
context depends on GPS, energy consumption becomes more
significant. For example, having the GPS interface always
on for one hour, brings the battery level on an average
(10 experiments) of 93.4% (s.d. 1.95%), which corresponds
to a voltage of 4,053mV (s.d. 22.9mV). We observe that
optimization on this point (i.e. mainly for GPS consumption)
can be done if a less responsive system is acceptable—e.g.
turning on the GPS interface only at fixed time intervals, or
considering only other less grained localization technologies
in A-GPS [47].

3) Storage Overhead: The most critical components of
CREPE from the storage point of view are the CREPE policy
and context database, CEP, and the cache of certificates for
authorized third parties. The sizes of the policies considered
in the previous experiments (Section VI-Bla) are 4,643,
5,993, 7,335, and 8,773 bytes, for 15, 30, 45, and 60 rules,
respectively—i.e. considering the first (oldest) Google Dev
Phone (HTC Dream, with 192 MB of RAM and 256 MB of
internal flash memory), this represents just 0.0023%, 0.0030%,
0.0036%, and 0.0044% of the RAM, respectively.

CEP, when the policy with 60 rules is loaded, takes 2,146
bytes (0.0011% of RAM), while the corresponding CREPE
database takes 9,216 bytes (0.0034% of flash). We remind
that when the policy is in the database it has a different
representation than CEP. Furthermore, the database contains
also the information about the context associated to the policy.
The message of the command with the policy considered in
the experiment in Section VI-Blc is 3,248 bytes. Finally, our
certificates have a size of some 2,700 bytes (0.0010% of flash).
We argue that all the storage requirements are very feasible
for Android smartphones currently on the market.

VII. CONCLUDING REMARKS

The lack of the possibility—for users and authorized third
parties—to regulate the behaviour of smartphones, based on
the context in which they are, makes it difficult to adopt
this technology to its full potential. As an example, a user
might avoid to install an application if she cannot control its
behaviour at any time. Furthermore, the user might want the



phone to change (even automatically) its behaviour accord-
ingly to some contextual situations. In this paper, we propose
a solution for these problems: CREPE (Context-Related Policy
Enforcing for Android). This is the first system that enforces
fine-grained context-related policies that can be set by both the
phone users and the authorized third parties. Also, policies can
be set at runtime and remotely, via SMS, MMS, Bluetooth, or
QR-code. We have designed and implemented CREPE. Exper-
imental results support not only the feasibility of the proposal,
but also its efficiency against the main issues of mobile devices
(energy consumption, responsiveness, and storage). While in
some scenarios CREPE could be managed remotely by experts
(e.g. the IT Department of a company that gives phones to
its employees), in other cases regular users have to do it. As
future work we plan to: (i) study to which extent users would
be willing and able to manage CREPE; (ii) pre-define general
purpose policies that the user might just activate/deactivate
based on her needs.
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