POSTER: Demonstrating the Effectiveness of MOSESdroid
for Separation of Execution Modes

Giovanni Russello Mauro Conti Bruno Crispo
University of Auckland Universita di Padova, Universita di Trento
Auckland, New Zealand Padova, Italy Trento, Italy

g.russello@auckland.ac.nz

Earlence Fernandes
Vrije Universiteit Amsterdam
The Netherlands
earlence@cs.vu.nl

ABSTRACT

In this poster, we describe a demo of a light virtualisation solu-
tion for Android phones. We named our solution MOSESdroid
(MOde-of-uses SEcurity Separation for anDROID). MOSESdroid
is a policy-based framework for enforcing software isolation of ap-
plications and data. In MOSESdroid, it is possible to define distinct
security profiles within a single smartphone. Each security profile
is associated with a set of policies that control the access to appli-
cations and data. One of the main characteristics of MOSESdroid
is the dynamic switching from one security profile to another. Each
profile is associated with a context as well. Through the smart-
phones sensors, MOSESdroid is able to detect changes in context
and to dynamically switch to the security profile associated with
the current context. Our current implementation of MOSESdroid
shows minimal overhead compared to standard Android in terms
of latencies and battery consumption.

Keywords

Android Security Extension, Separation of Modes, Light Virtuali-
sation

1. MOTIVATION

Latest smartphone models provide computational power and stor-
age capacity that only few years ago were exclusive realm of lap-
top and desktop computers. Today, smartphones enable the users
to perform several tasks while being on the move carrying only a
device that easily fits in a pocket. Users have since recognised the
advantages of smartphones and it does not come as a surprise that
in 2011 half a billion of smartphones have been sold world-wide
[2].

Another incentive to smartphone sales comes from the prolifera-
tion of enterprises that adopt smartphone in their IT infrastructure.
A large number of enterprises allow their employees’ smartphones
to connect to their IT infrastructure. Enterprise have recognised

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’12 October 16-18, 2012, Raleigh, North Carolina, USA.

Copyright 2012 ACM ...$10.00.

conti@math.unipd.it

crispo@disi.unitn.it

Yury Zhauniarovich
Universita di Trento
Trento, Italy

zhauniarovich@disi.unitn.it

that opening their IT infrastructures to employee-owned smartphones
vastly increases their productivity. This Bring-Your-Own-Device
(BYOD) policy [4] has advantages for both parties: companies can
save budget on acquiring and maintaining a fleet of smartphones;
employees can avoid to carry around several devices (i.e. at least
one for work, and one for private computing).

Given the success of smartphones, these devices are becoming an
attractive target for attacks. As a consequence, we have witness a
growth in the number of malware types on smartphones [1]. For in-
stance, malicious applications may access emails, SMS and MMS
messages stored in the smartphone. This poses serious security
concerns to sensitive corporate data, especially when the standard
security mechanisms offered by the platform are not sufficient to
protect the users from such attacks [3].

One possible solution to this problem is to compartmentalise the
phone, by keeping applications and data related to work separated
from recreational applications and private/personal data. This sep-
aration can be achieved by supporting separate security environ-
ments. On the same device, one security environment can be ded-
icated to sensitive/corporate data and trusted applications while on
another environment the user could install entertainment and third-
party applications. As long as applications from the second envi-
ronment are not able to access data of the first environment the risk
of leakage of sensitive information can be greatly reduced.

An implementation of this solution is represented by virtualisa-
tion technologies where different instances of an OS can run sepa-
rately on the same device. When deployed on fully-fledged devices
such PCes and servers, virtualisation is an effective solution to cre-
ate separate computation environments. Another approach that is
taking momentum especially for smartphones is para-virtualisation
[8]. Unlikely full virtualisation where the guest OS is not aware
of running in a virtualised environment, in para-virtualisation it
is necessary to modify the guest OS to boost performance. Cur-
rent implementations include Trango, VirtualLogix, L4 microker-
nel, L4Android [6, 5]. However, these approaches are still too
resource demanding for embedded systems such as smartphones
especially in terms of the battery overhead during the switching
between different environments.

2. MOSESDROID OVERVIEW

In this section, we provide an overview of MOSESdroid. More
details of MOSESdroid can be found in [7]. As Figure 1 shows, the
MOSESdroid framework extends some the modules of the Android
middleware. The separation of execution is realised in MOSES-

Security Profile:

i Security Profile:
Work '

1

'

Private

Applications
oy
MOSESdroid
— Configuration
Manager

Security
Policies

Security
Policies

MOSESdroid Hypervisor ‘

Policy Enforcement

MO SESdroid Modile
Android Middleware

Context Monitoring
Module

Linux kernel

Figure 1: MOSESdroid Overview.

droid through the notion of Security Profile (SP). MOSESdroid
supports several SP instances within the same device. By default,
the “Default” SP is always present in MOSESdroid. This SP can be
used for containing newly installed applications or new data stored
in the smartphone (e.g., as an email attachment). The “Work™ SP
is used for accessing work-related data through company-approved
applications. The “Private” SP is used by the user for accessing
private information such as emails and SMS messages from family
and friends. Also, in “Private” SP the user can install her preferred
applications and games.

An SP is associated with a set of security policies. Through the
enforcement of the security policies, MOSESdroid guarantees that
applications within an SP can access only the data within the same
SP. MOSESdroid achieves this fine-grained level of enforcement
by means of data tainting implemented in the Policy Enforcement
Module (PEM). Basically, when data is associated with an SP it is
tainted with the SP name. The security policies specified in that SP
enforce the constraint that applications can only access data tainted
with the label of the same SP name. For instance, in Figure 1 the
data in the “Work”™ SP is tainted with the label “Work”. The se-
curity policies of the “Work™ SP grant access to the data only to
applications contained in the same SP.

The MOSESdroid Hypervisor (MH) is responsible for de/acti-
vating SPes. When an SP is activated, the MH loads the security
policies of the SP in the PEM and enables the applications associ-
ated to the SP. Deactivating an SP is the opposite of activation: first
the applications are disable and then the policies in the PEM are
unloaded. However, it may require an extra step that is the killing
of running applications. When an application requests access to
a piece of information, the PEM grants access only if a security
policy in the SP grants such request.

The switching between SPes can be manually controlled by the
user. However, MOSESdroid provides a more sophisticated mech-
anism based on the context. In MOSESdroid, an SP can be as-
sociated with a context expression that is a boolean expression on
contextual data such as location and time. When a given context
expression is evaluated to true MH activates the respective SP. The
evaluation of context expressions is a task performed by the Con-
text Monitoring Module (CMM). For instance, the “Work™ SP
can be associated with a context expression that is true only during
working hours and within the office facilities. In this way, the em-
ployee is allowed to access applications and data within her private
profile only outside the working period and environment.

The creation of new SPes and the editing of existing ones can

be done by means of the MOSESdroid Configuration Manager
(MCM). The MCM allows the users to associate applications and
data to an SP. Moreover, the MCM supports the specification of
security policies and context expressions. The MSM supports the
specification of locked SPes: a locked SP has its settings protected
by a password. In order to edit the settings of a locked SP the user
needs to supply a password first. For instance, the “Work” SP in
Figure 1 is a locked profile where the password is only know to
the IT administrator of the company where the user of smartphone
works. In this way, the user owning the smartphone cannot edit. In
this way, the company makes sure that its SP is not modified by the
user once it is installed in the smartphone.

3. DEMO

In our demo, we demonstrate several aspects of MOSESdroid.
First of all, we show how to define new SPes and how to edit exist-
ing ones. Second, we demonstrate how changing of context infor-
mation drives the switching of SPes. Finally, we show the impact
that MOSESdroid has on the execution of the applications.

3.1 Security Profile Management

The Profile Manager App is an application that allows the user
to create an SP and modify existing ones. The application also
allows the user to define and edit context expressions that later
the user can associate with an SP. The Profile Manger App stores
and retrieves the context expressions to and from the ContextDef
content provider. When a new context definition is stored in Con-
textDef, a conflict check is performed to avoid that the new context
definition is overlapping with the context definitions already stored
in the ContextDef. As a matter of fact, if two or more context
definitions overlap then it might be the case that in a given situa-
tion more than one SP needs to be activated. We decided to have
here a very restrictive approach by avoiding that overlapping con-
text definitions can be stored in the ContextDef. However, as part
of our future research direction we will explore conflict resolution
strategies such as prioritising each SP to select the one with highest
priority.

Figure 2(a) shows a screenshot of the main activity list of the
Profile Manager App. If the user selects to edit an existing SP,
the application retrieves the definitions of all the SPes stored in the
Profile Store. The list of existing SPes is shown to the user as in
Figure 2(b). Clicking on an SP in the list will bring the user to
the editing activity list (Figure 2(c)). In MOSESdroid, each SP has
assigned an owner that is the entity authorised to define and modify
the SP. The owner of an SP can be the user of the device that creates
her own SP. However, a user can deploy on her device SPes defined
by third-parties. To protect the SP from unauthorised modification,
we support several mechanisms for authenticating the SP owners,
such as passwords, certificate, and biometric authentication. In case
the user has no clearance, such as in the case of the “Work™ SP, then
a error message will be shown as in Figure 2(d).

3.2 Security Profile Switching

One of the main contributions of MOSESdroid compared to other
similar approaches is the use of context for controlling the activa-
tion and deactivation of SPes. In MOSESdroid, each SP is associ-
ated with one or several contexts. A context is defined as a boolean
expression over raw data from the device sensors (such as from
GPS, clock, Bluetooth, etc.) and logical sensors, that is functions
that combine raw data from physical sensors to capture specific user
behaviours, such as detecting when the user is running. The evalu-
ation of context expressions is executed by the Context Monitoring
Module (CMM) (see Figure 1). When a new context expression

=D Y i e all B 13:40
Profile manager

R Create security profile wizard

profile to tag with a

‘ Edit security profile
L Edit security profile
Context definition
Create a context to automatically enforce
policies
Edit context
Edit an existent context

WO Y i3 Yl B 13:43
Profile manager

Select a profile to edit:
Long click to delete.

Private
Owned by Joe
Work

Owned by Software Solutions

Default

Help

L KR i il @ 14:20
Profile manager

Select what do you want to edit:
;‘ Edit name

Edit associated
> applications

Forbidden

Edit associated data

You don't have the right credential

Edit associated context to edit this profile.

Change password ok
L
© (d)

Figure 2: Screenshots of the Profile Manager App. (a) Main
activity view. (b) View of the existing Security Profile. (c) Ac-
tivities for editing an existing Security Profile. (d) Message to a
user that tries to edit a profile with no clearance.

is satisfied, the CMM notifies the MOSESdroid Hypervisor (MH).
If the new context expression is associated with the SP that is cur-
rently active then no further actions are needed. Otherwise, the MH
initiates the SP switching.

The switching of SPes consists in executing the following steps.
Firstly, the MH disables all the applications associated with the cur-
rent SP. If applications are still active then the MH forces them to
terminate. Secondly, the MH disables the set of security policies
of the current SP that are stored in the Policy Enforcement Module
(PEM). Thirdly, the set of security policies associated with the new
SP are enabled in the PEM. Finally, the MH retrieves the list of
applications of the new SP and enables them.

3.3 Security Policy Enforcement

The enforcement of the security policies happens within the Pol-
icy Enforcement Module (PEM). When an application requests ac-
cess to a resource, the Policy Enforcement Point (PEP) intercepts
such a request. The PEP collects information about application
UID, the resource being accessed and the type of operation. The
PEP forwards this information to the Policy Decision Point (PDP).
The PDP uses the information received by the PEP to evaluate
the security policies relevant to the request stored in the Policy
Provider. Based on the evaluation of the policies, the PDP might
decide either to allow or disallow the request. The PDP informs the
PEP of the decision and then it is the responsibility of the PEP to
take the necessary actions for the enforcement of such a decision.

In Android, several components are responsible for mediating
access requests of applications to the device resources. Therefore,
we need to connect several PEPs with these components within
the Android Middleware to intercept such requests and to enforce
the PDP decisions. The PEP-1 is connected with the LibBinder
module for intercepting requests to access simple resources, such
as device ID (IMEI), phone number and location data, as well as

complex data such as user’s calendar and contact entries.

Inthe LibBinder, we intercept the standard cursor from where
we extract the CursorWindow. The CursorWindow provides
methods that can be used for modifying the data contained in the
cursor. Using the CursorWindow allows us to filter out from
the cursor data only part of the information. In this way, our en-
forcement mechanism achieves a fine-grained filter capability. For
instance, if a work application retrieves the contact entries from the
contact provider, all the private contact entries can be filter out from
the data contained in the CursorWindow before it is returned to
the application.

Other PEPs are connected with some classes of the Java Frame-
work Library (JFL) in the Dalvik Virtual Machine. In particular, the
PEP-2 is connected with the Socket class for controlling network
traffic even if sent over an encrypted socket (SSL). In the Socket
class, we have modified the socket .open (address) method
to inspect the address to where the data is sent. In this way, we
can restrict the use of only authorised addresses or substitute the
address specified by the application with an address defined by the
user. By modifying the sendStream () method, we are able to
intercept the data before it is sent and perform some actions, such
as filtering or substitutions. Finally, for capturing operations on the
file system, such as reading and writing on the local storage, the
PEP-3 is connected with the OSFileSystem class.

4. REFERENCES

[1] Eric Chien. The motivations of recent android malware.
http://www.symantec.com/content/en/us/
enterprise/media/security_response/
whitepapers/motivations_of_recent_
android_malware.pdf.

[2] Gartner says worldwide smartphone sales soared in fourth

quarter of 2011 with 47 percent growth. http://www.

gartner.com/it/page.jsp?id=1924314.

Gartner survey shows byod is top concern for enterprise

mobile security. http://www.gartner.com/it/

page. jsp?id=2048617.

Unisys establishes a bring your own device (byod) policy.

http://www.insecureaboutsecurity.com/

2011/03/14/unisys_establishes_a_bring_
your_own_device_byod_policy/.

[5] Technische Universitat Dresden and University
of Technology Berlin. L4android.

[6] Matthias Lange, Steffen Liebergeld, Adam Lackorzynski,
Alexander Warg, and Michael Peter. L4android: a generic
operating system framework for secure smartphones. In
Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices, SPSM 11, pages
39-50, New York, NY, USA, 2011. ACM.

[7] Giovanni Russello, Mauro Conti, Bruno Crispo, and Earlence
Fernandes. Moses: supporting operation modes on
smartphones. In Vijay Atluri, Jaideep Vaidya, Axel Kern, and
Murat Kantarcioglu, editors, SACMAT, pages 3—-12. ACM,
2012.

[8] Yang Xu, Felix Bruns, Elizabeth Gonzalez, Shadi Traboulsi,
Klaus Mott, and Attila Bilgic. Performance evaluation of
para-virtualization on modern mobile phone platform. In
Proceedings of the International Conference on Computer,
Electrical, and Systems Science, and Engineering, 2010.

3

—

[4

—

