
FSquaDRA: Fast Detection of

Repackaged Applications

Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo,

Francesco La Spina, Ermanno Moser
zhauniarovich, gadyatskaya, crispo, laspina, moser@disi.unitn.it

University of Trento

Repackaging

2

Android Package (.apk)

assets

AndroidManifest.xml

uncompiled resources

.dex

files

resources.

arsc

Developer
signature

Signing

Developer

certificate
(same)

Adversary

certificate
(different)

Rebranding
(good)

Plagiarizing
(bad)

Device

Motivation

 App repackaging is very easy on Android:
– Fetch an app  Disassemble  Change  Assemble 

Sign with own certificate  Publish

 The code of the application can be easily
changed
– smali/backsmali, AndroGuard, dex2jar, apktool, etc.

 Plagiarizing is used to:
– steal advertising revenues (14% of ad revenues)*

– collect user database (10% of user base)*

– malware distribution (86% of Android malware samples
use this distribution channel)**

3

* C.Gibler et al. “Adrob: examining the landscape and impact of Android application

plagiarism”. In Proc. of MobiSys ’13

** Y. Zhou, X. Jiang. “Dissecting Android malware: Characterization and Evolution”.

In Proc. of S&P ’12

Problem Statement

Issue: How to detect repackaged Android
applications

 fast

– 1.1+ million apps on Google Play *

– 190+ third-party markets **

– quadratic complexity

 in effective way?

– need for a similarity metric to what extent one app is
similar to another

4

* N. Viennot et al. “A Measurement Study of Google Play”. In Proc. of SIGMETRICS ‘14

** T. Vidas, N. Christin. “Sweetening Android Lemon Markets: Measuring and

Combating Malware in Application Marketplaces”. In Proc. of CODASPY ‘13

FSquaDRA: Idea

 Repackaged apps want to
maintain the “look and feel” of
the originals

– Opera Mini fake: 230 of 234 files
are the same

 IDEA: compare apps based
on the included resource files
(same files  same apps)

5

FSquaDRA: Approach

 Compute hashes of all files inside two apps

 Calculate Jaccard index for the extracted
hashes:

6

 Compare the obtained value with a threshold

 PROBLEM: How to compute hashes
efficiently?

Hi – set of hashes of files in apk i

Speeding Up Hash Calculations

As a part of application signing process SHA1
digest of each file inside apk is calculated

7

FSquaDRA: Evaluation

 Dataset:

– 55779 apk samples

– from 8 markets including Google Play

 Pairwise comparison of all apps in the dataset

 Objectives:

– plagiarizing rates for apps signed with different certificate

– rebranding rates for apps signed with the same certificate

 Evaluate Efficiency and Effectiveness

8

Evaluation: Pairwise Comparison

9

Evaluation: Efficiency

 FSquaDRA is implemented as a single-
threaded Java program

– not really optimized

 We ran experiments on a commodity laptop
(2.9 GHz Intel Core i7, 8GB RAM)

– 15,10 hours to load hashes into memory

– 64,41 hours to compute similarity score for all app
pairs

 On average 6700 app pairs per second

10

Evaluation: Effectiveness

 Metrics:

– False Positives? For apps FSquaDRA considers
repackaged, are they actually repackaged?

– False Negatives? For apps FSquaDRA considers
different, are they really not repackaged?

 Approaches:

– analyze FSquaDRA on a dataset of repackaged apps

– compare FSquaDRA metrics with the state-of-the-art tools

 Problems:

– no public dataset with repackaged apps

– only one public tool: AndroGuard

11

Effectiveness: Evaluation Setup

 AndroGuard – open-source tool by A. Desnos:
– computes code-based similarity metric

– slow (65 sec to compare an app pair on average)

– does not produce symmetric values

 We use average score of (A,B) and (B,A) as the
similarity score for AndroGuard (ags)

 For each selected bin:
– randomly picked 100 app pairs with different

certificates and 100 app pairs with the same
certificate;

– calculated their AndroGuard similarity score (ags)

– compared with FSquaDRA similarity score (fss)

12

Effectiveness: Plagiarizing Results

(different certificates, fss>0)

13

Correlation: 0.7919

Difference (fss-ags):

-mean: -0.0412

-st. dev.: 0.1862

-median: -0.0480

Red: line of best fit

Blue: LOWESS

(locally weighted

scatterplot
smoothing line)

Effectiveness: Rebranding Results

(same certificates, fss>0)

14

Correlation: 0.5807

Difference (fss-ags):

-mean: -0.2761

-st. dev.: 0.2704

-median: -0.2518

Red: line of best fit

Blue: LOWESS

(locally weighted

scatterplot
smoothing line)

FSquaDRA: Features

 The first solution detecting repackaged apps based on resource
files

 Our resource-based similarity score is highly correlated with the
code-based similarity score of AndroGuard (0.79 for plagiarizing,
0.58 for rebranding)

 Faster than any known competitor

– DNADroid by J. Crussell et al. (ESORICS 2012) - 0.012 app pair/sec

• PDG subgraph isomorphism

• Hadoop MapReduce framework with a server and 3 desktops

– Juxtapp by S. Hanna et al. (DIMVA 2012) - 49.4 app pair/sec

• k-grams of opcodes  hashing  feature vector  Jaccard distance

• Intel Xeon CPU (8 cores) , 8GB of RAM

– Our approach - 6700 app pair/sec

 Open-source *

15* https://github.com/zyrikby/FSquaDRA

FSquaDRA: Future Work

 The proposed solution is not sustainable:

– attackers can change a bit in all files in apk

– adversaries can add a lot of new resources to
decrease the similarity score

– libraries containing resources may influence the
similarity score

 No clear values for false positive and false negative
scores

– absence of publicly available dataset

– almost all already developed tools (except
AndroGuard) are not available

16

THANK YOU

17

zhauniarovich@disi.unitn.it

