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Abstract—Smartphones are very effective tools for increasing the productivity of business users. With their increasing

computational power and storage capacity, smartphones allow end users to perform several tasks and be always updated while

on the move. Companies are willing to support employee-owned smartphones because of the increase in productivity of their

employees. However, security concerns about data sharing, leakage and loss have hindered the adoption of smartphones for

corporate use. In this paper we present MOSES, a policy-based framework for enforcing software isolation of applications and

data on the Android platform. In MOSES, it is possible to define distinct security profiles within a single smartphone. Each

security profile is associated with a set of policies that control the access to applications and data. Profiles are not predefined or

hardcoded, they can be specified and applied at any time. One of the main characteristics of MOSES is the dynamic switching

from one security profile to another. We run a thorough set of experiments using our full implementation of MOSES. The results

of the experiments confirm the feasibility of our proposal.

Index Terms—Android, BYOD, virtualization, access control, context.

✦

1 INTRODUCTION

WORLDWIDE smartphone sales totalled 250 mil-
lion units in the third quarter of 2013, up 46

percent from the same quarter of 2012 [1]. In the
smartphone domain, the Android OS is by far the
most popular platform with 82% market share. Those
figures clearly show the pervasiveness of Android,
mostly justified by its openness to third party devel-
opers.

Smartphones allow end users to perform several
tasks while being on the move. As a consequence,
end users require their personal smartphones to be
connected to their work IT infrastructure. More and
more companies nowadays provide mobile versions
of their desktop applications. Studies have shown
that allowing access to enterprise services with smart-
phones increases employee productivity [2]. An in-
creasing number of companies are even embracing the
BYOD: Bring Your Own Device policy [3], leveraging
the employee’s smartphone to provide mobile access
to company’s applications. Several device manufac-
turers are even following this trend by producing
smartphones able to handle two SIMs (Subscriber
Identification Modules) at the same time.

Despite this positive scenario, since users can install
third-party applications on their smartphones, several
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security concerns may arise. For instance, malicious
applications may access emails, SMS and MMS stored
in the smartphone containing company confidential
data. Even more worrying is the number of legitimate
applications harvesting and leaking data that are not
strictly necessary for the functions the applications
advertise to users [4], [5]. This poses serious security
concerns to sensitive corporate data, especially when
the standard security mechanisms offered by the plat-
form are not sufficient to protect the users from such
attacks.

One possible solution to this problem is isolation, by
keeping applications and data related to work sepa-
rated from recreational applications and private/per-
sonal data. Within the same device, separate security
environments might exist: one security environment
could be only restricted to sensitive/corporate data
and trusted applications; a second security environ-
ment could be used for entertainment where third-
party games and popular applications could be in-
stalled. As long as applications from the second envi-
ronment are not able to access data of the first envi-
ronment the risk of leakage of sensitive information
can be greatly reduced.

Such a solution could be implemented by means of
virtualization technologies where different instances
of an OS can run separately on the same device.
Although virtualization is quite effective when de-
ployed in full-fledged devices (PC and servers), it is
still too resource demanding for embedded systems
such as smartphones. Another approach that is less
resource demanding is paravirtualization. Unlikely
full virtualization where the guest OS is not aware of
running in a virtualised environment, in paravirtual-
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ization it is necessary to modify the guest OS to boost
performance. Paravirtualization for smartphones is
currently under development and several solutions
exist (e.g., Trango, VirtualLogix, L4 microkernel [6],
L4Android [7], [8]). However, all the virtualization so-
lutions suffer from having a coarse grained approach
(i.e., the virtualised environments are completely sep-
arated, even when this might be a limitation for
interaction). Other limitation is the hardcoding of the
environment specification. Environments cannot be
defined by the user/company according to their needs
but they are predefined and hardcoded in the virtual
machine. Furthermore, the switching among environ-
ments always require user interactions and it could
take a significant amount of time and power. While
researchers are improving some of these aspects [9],
the complete separation of virtual machines and the
impossibility to change or adapt their specifications
remain an open issue.

1.1 Contributions

This paper presents MOSES, a solution for separating
modes of use in smartphones. MOSES implements
soft virtualization through controlled software isola-
tion. With MOSES:

• each security profile can be associated to one or
more contexts that determine when the profile
become active. Contexts are defined in term of
low level features (e.g., time and location) and
high level features (reputation, trust level, etc.).

• both contexts and profiles can be easily and dy-
namically specified by end users. MOSES pro-
vides a GUI for this purpose. Profiles can be fine-
grained to the level of single object (e.g., file,
SMS) and single application.

• switching between security profiles can require
users interaction or be automatic, efficient, and
transparent to the user.

We implemented MOSES and run a thorough set
of experiments to evaluate its efficiency and effec-
tiveness. The experiments show the feasibility and
accepted performance of our solution for storage and
energy consumption.

The rest of this paper is organised as follows. In
Section 2 we recall some preliminaries for the Android
security, while we discuss the related work in Section
3. MOSES is presented in Section 4, while details of
its architecture are discussed in Section 5. Section 6
covers MOSES implementation in details. In Section 7
we describe a thorough evaluation of MOSES. Con-
cluding section discusses limitations of the current
implementation, and envisages possible future work.

2 ANDROID SECURITY

Google Android is a Linux-based mobile platform
developed by the Open Handset Alliance (OHA) [10].

Most of the Android applications are programmed in
Java and compiled into a custom byte-code that is run
by the Dalvik Virtual Machine (DVM). In particular,
each Android package is executed in its own address
space and in a separate DVM. Android applications
are built combining any of the following four basic
components. Activities represent a user interface; Ser-
vices execute background processes; Broadcast Receivers
are mailboxes for communications within components
of the same application or belonging to different
apps; Content Providers store and share application’s
data. Application components communicate through
messages called Intents.

Focusing on security, Android combines two levels
of enforcement [11], [12]: at the Linux kernel level and
the application framework level. At the Linux kernel
level Android is a multi-process system. During in-
stallation, an application is assigned with a unique
Linux user identifier (UID) and a group identifier
(GID). Thus, in the Android OS each application is
executed as a different user process within its own
isolated address space. All files in the memory of a
device are also subject to Linux Access Control. On a
Linux, file access permissions are set for three types
of users: the owner of the file, the users who are in
the same group with the owner of the file and all
other users. For each type a tuple of read, write and
execute (r-w-x) permissions is assigned. In Android,
by default, the files in the user’s home directory can
be read, written and executed by the owner and the
users from the same group as the owner. All other
users cannot work with these files. So as different
applications by default have different user identifiers
files created by one application cannot be accessed by
another.

At the application framework level, Android pro-
vides access control through the Inter-Component
Communication (ICC) reference monitor. The refer-
ence monitor provides Mandatory Access Control
(MAC) enforcement on how applications access the
components. In the simplest form, protected features
are assigned with unique security labels—permissions.
Protected features may include protected application
components and system services (e.g., Bluetooth). To
make the use of protected features, the developer of
an application must declare the required permissions
in its package manifest file: AndroidManifest.xml.

As an example, consider an application
that needs to monitor incoming SMS
messages, AndroidManifest.xml in-
cluded in the application’s package would
specify: <uses-permission android:name=

"android.permission.RECEIVE_SMS"/>.
Permissions declared in the package manifest
are granted at the installation time and can not be
modified later. Each permission definition specifies a
protection level which can be: normal (automatically
granted), dangerous (requires user confirmation),
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signature (requesting application must be signed
with the same key as the application declaring the
permission), or signature or system (granted to
packages signed with the system key or located in
the system image).

3 RELATED WORK

This section provides an overview of the related work.
In particular, Section 3.1 describes research efforts
in enhancing the security of the Android platform.
Section 3.2 discusses BYOD approaches for mobile
systems. Solutions based on secure container are pre-
sented in Section 3.2.1, while Section 3.2.2 covers vir-
tualization solutions. Section 3.2.3 describes solutions
that adopted yet other different approaches.

3.1 Android security extensions

There are a lot of solutions proposed to improve the
security of Android. We consider the ones that are
more related to our system.

In Android, at installation time users grant ap-
plications the permissions requested in the manifest
file. Android supports an all-or-nothing approach,
meaning that the user has to either grant all the
permissions specified in the manifest or abort the
installation of the application. Moreover, a permission
cannot be revoked at runtime. To circumvent this
coarse-grained approach, several solutions have been
proposed. Apex [13] allows users to select which
permissions to grant to an application during the
installation. Saint [14] is a policy-based application
management system aiming at controlling how appli-
cations interact with each other. CRêPE [15] allows a
user to create policies that can automatically control
the granting of permissions during runtime.

More recently, [16], [17] concentrate on the protec-
tion of the user’s private data. In particular, Mock-
Droid [16] is a system that can limit the access of
the installed applications to phone data by filtering
out information. For instance, an application querying
the contacts’ provider may receive no results even if
the provider is not empty. This approach is further
refined in TISSA [17] where users are able to define
the accuracy level of the information revealed to the
application by means of privacy levels.

Taintdroid [4] proposes dynamic taint analysis to
control how data flow between applications. In Taint-
droid, taints are statically associated with predefined
data sources, such as the contact book, SMS messages,
the device identifier (IMEI), etc. Taintdroid tracks the
flow of tainted data and notifies the user if the tainted
data leave the device through the outbound network
connections. By using Taintdroid’s tainting capabil-
ity, AppFence [18] provides additional mechanisms
to shadow sensitive data and to block unauthorised
leakage of data via network. YAASE [19] encompasses

tainting to prevent confuse deputy and privilege esca-
lation attacks. In [20], [21] Taintdroid capabilities are
used to enforce data-driven usage control. In [22], [23]
taint tracking enables the system to trace sensitive
information, enterprise and health data respectively,
and enforce policies for that data. Unfortunately,
Taintdroid has some limitations such as inability to
trace implicit flows. Moreover, it prevents the load of
shared libraries by third-party applications to prevent
leakages through native code.

Context information plays a pivotal role to enhance
security in mobile devices. In [13], [15], [24], [25],
context is used to trigger security rules at runtime.
The approaches in [20], [21] use context to limit access
to data in some environments. In [23], special context
is a necessary condition to generate security notifica-
tions. In [22] the context is used to taint data gen-
erated in predefined environments. FlaskDroid [25]
uses context to set up the values of one or more
boolean variables in policies. These boolean variables
are later used to instantiate a policy that is enforced
by FlaskDroid’s policy enforcement system, which
is based on the extension of SEAndroid mandatory
access control. The mandatory access control imple-
mented in [25], [26] considerably diminishes the effect
of root exploits.

3.2 Bring Your Own Device approaches

Besides approaches to improve Android security in
general, some solutions specifically aimed at sup-
porting the BYOD have been proposed. The most
important are listed below.

3.2.1 Secure container

Secure container (SC) is a special mobile client ap-
plication that creates an isolated environment on the
phone at the application layer. The application allows
an enterprise administrator to create policies which
control this isolated environment but cannot control
the behaviour of a user outside this container [27].
This approach does not require the modification of the
system image and is widely explored in the research
community. AppGuard system [28] for instance, is a
standalone Java application that disassembles apk file,
inlines security checks before dangerous instructions
according to a selected policy and then reassembles
and signs the package. Thus at runtime, before exe-
cuting a dangerous instruction AppGuard performs
a security check and if the instruction is not allowed
according to the policy an exception is thrown. Jeon et
al. [29] use package rewriting to substitute dangerous
instructions to equivalent ones, which are guarded by
additional security checks. These guarded functions
are implemented in a standalone Android service,
which performs the additional checks. Aurasium sys-
tem [30] intercepts some critical Bionic libc functions
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(e.g., read(), write(), open()) and calls the Aura-
sium (safe) version of them.

Many commercial solutions use the concept of se-
curity container implemented as a user application.
NitroDesk TouchDown [31] and Good [32] offer solu-
tion with a prefixed set of business functionality in the
container (i.e., email). Other solutions, (for instance,
Fixmo [33]) offer a set of basic applications and also
an SDK that can be used to develop new applications,
if needed. The SDK provides wrappers for danger-
ous operations and passes them through the secure
container application. Divide [34] and AT&T [35] use
package rewriting technique to wrap up dangerous
instructions of third-party applications, so that the
interaction of these rewritten applications with the
outer world happens through the secure container.

3.2.2 Mobile virtualization

Virtualization provides environments that are isolated
from each other, and that are indistinguishable from
the “bare” hardware, from the OS point of view.
The hypervisor is responsible for guaranteeing such
isolation and for coordinating the activities of the
virtual machines. Virtualization has been widely used
in traditional computers because it can: (i) increase
security, and (ii) reduce the cost of deployment of
applications (the hardware is shared in a secure way).
With the spreading of mobile devices and with the
increase of their performance capabilities the question
of porting virtualization to mobile platforms became
actual. Virtualization for mobile systems provides
specific advantages like: (i) the possibility to sepa-
rate communication subsystems (backed by real-time
operating system) from high-level application code
(which requires functional rich operating system with
good interfaces); (ii) an opportunity to provide licence
separation; (iii) a chance to increase the security of the
communication stack [36].

However, there are still several barriers for the
adoption of virtualization in mobile devices. The
main one is that ARM architecture, which is the
most popular architecture for mobile devices, has a
non-virtualisable instruction set architecture [7] (ex-
cept Cortex-A15 design [37], which adds hardware-
assisted virtualization capabilities). So as efficiency is
a major concern in embedded virtualization, full vir-
tualization approaches (emulation and binary trans-
lation) are not yet applicable for these devices be-
cause they are computational expensive. Thus, for
embedded devices paravirtualization is used, which
requires source-code modification of guest operat-
ing system [38]. There are several approaches to
port popular Linux hypervisors to ARM architecture:
Xen [38], L4 [7], KVM [39]. There are also several
industry solutions: MVP by VMware [40], OKL4 by
OK Labs [41] and vLogix Mobile by Red Bend [42].
All these solutions can be applied to create separate
secure environments for business and private use.

However, since all these virtual machines are simply
ported to mobile platforms while being designed for
PCs, they all share low performance.

A much better approach is Cells [9]. Cells is a
new virtual machine specifically designed for mobile
platforms. It provides lightweight virtualization for
Android. The authors modified Android system in
such a way that it is possible to have several separated
environments, called Virtual Phones, based on the
same operating system. Virtual Phones are completely
separated from each other using kernel-level and user-
level device namespace mechanism.

Yet, a common drawback to all the above solu-
tions is that switching between virtual environments
requires user interactions, and the configuration of
each virtual environment is hardcoded and cannot be
changed by the end-user.

3.2.3 Other approaches

Besides the above approaches there few other solu-
tions. Gupta et al. [43] modified Android framework
to support dual mode of operation, private and en-
terprise. The modification allows to restrict the use
of communication capabilities of a phone, to force
communication through enterprise VPN and have an
encrypted external storage in enterprise mode. The
authors of TrustDroid [44] proposed to monitor IPC
communications, network traffic and filesystem access
to separate data exchange between different domains,
for instance, between enterprise and personal environ-
ments.

Other solutions use the capabilities of Taintdroid
to track sensitive information. The main difference
of these approaches is how to discover sensitive in-
formation. For instance, Feth et al. [21] proposed to
rely on external authorities which supply data-usage
policies with data. Thus, what data are sensitive in a
smartphone is defined by external trusted authorities.
In [22], the authors taint all the data that is produced
or accessed by enterprise applications as sensitive
information. Meanwhile, Ahmed et al. [23] relies on
the separation of public and private sources of data to
detect sensitive information. Differently from MOSES,
none of these solutions detects when a profile is
active without user interaction. Furthermore, all of
them offer only profiles predefined by the solution
developers.

4 MOSES OVERVIEW

This section provides an overview of our approach
named MOde-of-uses SEparation in Smartphones
(MOSES).

MOSES provides an abstraction for separating data
and apps dedicated to different contexts that are
installed in a single device. For instance, corporate
data and apps can be separated from personal data
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and apps within a single device. Our approach pro-
vides compartments where data and apps are stored.
MOSES enforcement mechanism guarantees data and
apps within a compartment are isolated from others
compartments’ data and apps. These compartments
are called Security Profiles (SP) in MOSES. Generally
speaking, a SP is a set of policies that regulates what
applications can be executed and what data can be
accessed.

One of the features introduced in MOSES is the
automatic activation of SP depending on the con-
text, in which the device is being used. SPs are
associated with one or more definitions of Context.
A context definition is a boolean expression defined
over any information that can be obtained from the
smartphone’s raw sensors (e.g., GPS sensor) and logical
sensors. Logical sensors are functions which combine
raw data from physical sensors to capture specific
user behaviours (such as detecting whether the user is
running). When a context definition evaluates to true,
the SP associated with such a context is activated. It
is a possible situation when several contexts, which
are associated with different SPs, may be active at the
same time. To resolve such conflicts, each SP is also
assigned with a priority allowing MOSES to activate
the SP with the highest priority. If SPs have the same
priority, the SP, which has been activated first, will
remain active.

MOSES permits a user to manually switch to a
specific SP. To this end, MOSES provides a system
app that the user can employ for forcing MOSES to
activate a given SP. However, this behaviour can be
restricted to avoid that the user activates unwanted
SP in a given context (for instance, switching to a
personal SP when at work).

Each SP is associated with an owner of the profile
and can be protected with a password. A SP can be
created/edited locally through an app installed on
the device. Additionally, MOSES supports remote SP
management. The former possibility may be used by
a user of the phone for managing her personal SP,
while the latter may be employed by an enterprise
administrator to control the work SP. To avoid that
the user tampers with the work SP, the security
administrator protects the work SP with a password.
In this way, MOSES can be used for realising a Mobile
Device Management solution to manage remotely the
security settings of a fleet of mobile devices.

The current version of MOSES leverages the same
idea of lightweigth separation of SPs as the one
presented in [45]. At the same time, although the same
idea is exploited, the approach used by MOSES is
completely new. The previous version of MOSES [45]
completely relies on Taintdroid to split data between
different profiles. Data separation occurred using
user-defined policies, which restricted the flow of
information between different profiles. In the cur-
rent version of MOSES, the separation of application
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data is implemented on Linux kernel level through
filesystem virtualization approach. This allows our
system to provide app data segregation out of the box.
Moreover, a user in the new version of MOSES needs
to define security policies only if she wants to apply
fine-grained constraints to data.

5 ARCHITECTURE

MOSES consists of the components presented in Fig-
ure 1. Central to MOSES is the notion of Context. The
component ContextDetectorSystem is responsible for
detecting context activation/deactivation. When such
an event happens, the ContextDetectorSystem sends a
notification about this to the SecurityProfileManager.

The SecurityProfileManager holds the information
linking a SP with one or more Context. The Se-
curityProfileManager is responsible for the activation
and deactivation of SPs. The SecurityProfileManager
implements the following logic:

• If a newly activated Context corresponds to the
active SP then the notification is ignored;

• If the SP corresponding to a newly active Context
has a lower or equal priority to the currently
running SP, then the notification is ignored;

• In all other cases, a SP switch has to be per-
formed. This means that the currently running SP
has to be deactivated and the new SP becomes
active.

In the latter case, the SecurityProfileManager sends a
command to the MosesHypervisor informing which is
the new SPs that needs to be activated.

The MosesHypervisor is the component that acts as a
Policy Decision Point (PDP) in MOSES. The MosesHy-
pervisor provides a central point for MOSES security
checks against the policies defined for the active SP
to regulate access to resources. The MosesHypervisor
delegates the policy checks to its two managers: the
MosesAppManager and the MosesRulesManager. The
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former is responsible for deciding which apps are
allowed to be executed within a SP. The latter takes
care of managing Special Rules.

The MosesPolicyManager acts as the Policy Admin-
istrator Point (PAP) in MOSES. It provides the API
for creating, updating and deleting MOSES policies.
It also allows a user to define, modify, remove mon-
itored Contexts and assign them to SPs. Moreover,
this component also controls access to MOSES policy
database (moses.db) allowing only applications with
special permissions to interact with this component.

The MosesTaintManager component manages the
“shadow database” which stores the taint values used
by Taintdroid. We have extended the functionality
of Taintdroid to perform more fine-grained tainting.
In MOSES, we can taint specific rows of a content
provider: to be able to perform per row filtering
when an app access data in the content provider. For
instance, it is possible to filter out from the query
result data the rows which contain the information
about device identifiers or user contacts. Given the
fact that the enforcement of policies depends on the
information provided by the MosesTaintManager, this
component acts as a Policy Information Point (PIP).

The decisions taken by the MosesHypervisor need to
be enforced by the Policy Enforcement Point (PEP).
MOSES affects several components within Android
middleware where decisions need to be enforced.
For this reason, the PEP includes several Android
components offering system services such as Location-
Manager and ActivityManagerService. Moreover, some
Android core classes (such as the OSFileSystem

and OSNetworkSystem) are modified to enforce de-
cisions regarding the access to the filesystem and
network, respectively.

The enforcement of separated SPs requires spe-
cial components to manage application processes and
filesystem views. When a new SP is activated, it might
deny the execution of some applications allowed in
the previous profile. If these applications are running
during the profile switch, then we need to stop their
processes. The MosesReaper is the component respon-
sible for shutting down processes of applications no
longer allowed in the new SP after the switch.

In MOSES, applications have access to different
data depending on the active profile. To separate data
between profiles different filesystem view are sup-
ported. This functionality is provided by the Moses-
Mounter. More details are considered in Section 6.2.

To allow the user of the device to interact
with MOSES, we provide two MOSES applications:
the MosesSpChanger and the MosesPolicyGui. The
MosesSpChanger allows the user to manually activate
a SP. It communicates with the MosesHypervisor and
sends it a signal to switch to the profile required
by the user. The MosesPolicyGui allows the user to
manage SPs. We consider this component in details
in Section 6.5.

6 IMPLEMENTATION

This section describes implementation details of
some key aspects of MOSES. In particular, the ver-
sion described here is based on the Android Open
Source Project (AOSP) [46] version 2.3.4 r1. More-
over, MOSES incorporates the functionality of Taint-
droid [4] to taint sensitive data.

6.1 Context Detection

One of the contributions of MOSES is that it can au-
tomatically switch SPs based on the current Context.
The ContextDetectorSystem is responsible for monitor-
ing Context definitions and for notifying the listeners
about the activation or deactivation of a Context.
The SecurityProfileManager component, which is one
of these listeners, is notified about the change through
the callback functions onTrue(context_id) and
onFalse(context_id), which correspond to acti-
vation and deactivation of a Context respectively. The
context_id parameter represents a Context identi-
fier. So as MOSES context detection functionality is
decoupled from the rest of the system, it may be
easily extended by integrating other context detection
solutions [47], [48].

When the system starts up, MOSES selects from
the database information about all Contexts and cor-
responding SPs. MOSES preserves this information
in a runtime map in the form of 〈Ci, (SPk, prtk)i〉,
where Ci is the identifier of Context and (SPk, prtk)i
is a tuple, which corresponds to the Context Ci and
consists of SP identifier SPk and the priority prtk that
corresponds to this profile. When the ContextDetec-
torSystem detects that a Context Ci becomes active
(meaning the Context definition is evaluated to true),
we select from this map the corresponding tuple
(SPk, prtk)i and put it in the list of active SPs. Because
more than one Contexts might be active at the same
time, there may be more than one SP to switch to.
In this case, from the list of active SPs the one with
the highest priority is selected. If the selected SP
identifier differs from the identifier of the currently
running SP, the ContextDetectorSystem sends a signal
to the MosesHypervisor to switch to the new profile.
Similarly, when ContextDetectorSystem detects that a
Context Ci becomes inactive, the tuple (SPk, prtk)i
is deleted from the list of active SPs. After that the
selection procedure of a SP with the highest priority
is repeated.

6.2 Filesystem Virtualization

To separate data between different SPs, we use a tech-
nique called directory polyinstantiation [49]. A polyin-
stantiated directory is a directory that provides a
different instances of itself according to some system
parameters. In brief, for each SP MOSES creates a
separate mount namespace [50].
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The Android filesystem structure is quite sta-
ble, i.e., the system forces an application to
store its files in the application’s “home” di-
rectory that is /data/data/<package_name>/

(<package_name> is the package name of the ap-
plication). During the installation of an application,
Android creates this “home” folder and assigns it
Linux file permissions to allow only the owner of
the directory (in this case the application) to access
the data stored in it. To provide applications with
different data depending on a currently running SPs,
polyinstantiation of “data” folder may be used, i.e.,
for each SP a separate mount namespace, which
points to different “physical” data folder depending
on the identifier of a SP, may be created. In MOSES
the described approach is used with two modifica-
tions. The first modification let the system to store all
“physical” data directories under one parent directory
(/data/moses_private/). The second modification
creates the bindings not between the whole data
folder and its “physical” counterpart, but bindings for
separate application folders. The former modification
allows MOSES to control direct access to the “phys-
ical” directories, while the latter permits to decrease
storage overhead, because the usage of some apps is
prohibited in some SPs.

The MosesMounter component is responsible for
providing the above functionality. In particular, it
receives the list of applications’ package names that
are allowed to execute in a SP. For each package
name, the MOSES system builds the paths to the
application “home” directory and to its MOSES
“physical” counterpart, using the information of the
identifier of a newly activated SP. These two paths
are passed to the mosesmounter native tool. This tool
at first checks if MOSES “physical” directory exists.
If not, then it creates this folder and copies there
the initial application data from the corresponding
“home” directory. Then the mosesmounter mounts
the “physical” directory to a “home” directory
using the Linux command mount(target,

mount_point, "none", MS_BIND, NULL) [50],
where mount_point corresponds to the path of
the “home” directory and target corresponds to
the path of the “physical” folder. Thus, the “home”
directory always contains the initial copy of the
application data, which are created by the Android
system during the application installation. If a new
SP is created, these initial data are copied to the
“physical” directory providing the application with a
fresh copy of its initial data as if the application has
just been installed. If this process finishes successfully,
the MosesMounter stores the name of this package
in the list of mounted points. Thus, the process of
polyinstantiation is completely transparent for the
applications: after the mounting the applications
work with the same paths as usual, although these
paths point to another “physical” locations. Thus,

there is no need to modify the applications to support
the separation of data between different SPs.

Before switching to a new SP, the MosesMounter
has to unmount all previously mounted points using
the values stored in the list of mounted points. Sim-
ilarly to the mounting, the MosesMounter passes the
path to a mounted point (from the list of mounted
points) to the mosesmounter tool, which performs un-
mounting. During this operation it is possible that
some processes hold some files opened. In this case,
the unmount command will fail. To overcome this
problem, MOSES sends a SIGTERM signal to the
process and repeats the unmounting. If after this
the unmounting is still unsuccessful, the MOSES will
send a SIGKILL signal to the process and once again
performs the unmount operation.

6.3 Dynamic Application Activation

Each SP is assigned with a list of application UIDs
that are allowed to be run when this profile is active.
As it was discussed in Section 2, each application
during the installation receives its own UID. MOSES
uses these identifiers to control which applications
can be activated for each SP. It should be mentioned
that some packages can share the same UID. This
happens if the developer of these applications have
explicitly assigned the same value to sharedUserId

property in the manifest files of the applications,
and signed these packages with the same certificate.
Thus, during the installation of these applications, the
Android system assigns them the same UID. In this
case, MOSES cannot distinguish these applications
and if one of them is allowed in one profile the other
will be allowed as well.

During the SP switching, the MosesAppManager
selects from the MOSES database the list of UIDs,
which are allowed in the activated profile, and
stores it into the set of allowed UIDs. To control
the launch of applications’ services and activities,
the hooks into the retrieveServiceLocked

and startActivityMayWait methods of
the ActivityManagerService and the
ActivityStack classes correspondingly are put.
These hooks communicate with the MosesAppManager
and check against the set of allowed apps if a
component of an application can be launched.
Additionally, the MosesAppManager controls the
appearance of application icons in Android’s
Launcher application. When a new SP is activated,
only the icons of the allowed applications for this
profile will be displayed.

6.4 Attribute-based Policies

Within each SP, MOSES enforces an Attribute Based
Access Control (ABAC) model [51]. The idea is that
within each SP, users can define fine-grained access
control policies to constraint application behaviour.
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(a) (b) (c) (d)

Fig. 2. Screenshots of MOSES Profile Manager application: (a) Context creation, (b) Security Profile creation,

(c) Application assignment to a Security Profile, (d) ABAC Rule creation

For instance, the user may want to deny an appli-
cation to read the files on an external storage. In this
case, the user may write a policy which will still let
the application to run within the profile but the access
of this application to files on an external storage will
be limited. For defining and editing policies, MOSES
provides an activity shown in Figure 2(d).

We have defined a simple policy language using the
ABAC model. The attributes types that are taken into
consideration in the MOSES language are capitalised
in Listing 1. These are Subject, Operation, Taint, Target,
andSP-Name. These attributes are described in the
following.

1 Subject Operation [Taint] Target

2 decision [perform action(param-list)] with scope SP-Name

Listing 1. Policy language used for ABAC rules

Subject represents the application to which the rule
is applied. The application UID is retrieved through
the GUI provided by MOSES for management (see
Figure 2(c)), listing the applications installed in the
system.

Operation is the action that the subject is execut-
ing. The value of this attribute is dependent on the
the control hooks added by MOSES in the Android
framework. Each hook communicates with a special
class in the framework library that processes the
information obtained from the operation hook. For
instance, for controlling access to ContentProvider, we
have injected hooks in the ContentResolver class.
Similarly, for network and filesystem operations we
have injected hooks in the core library. Currently,
MOSES supports the following Operation types:

• ContentProvider: Query ContentProvider, In-
sert in ContentProvider, Update ContentProvider,
Delete ContentProvider.

• LocationProvider: Get Last Known Location, Re-
quest Location Updates, Add Proximity Alert,
Request Single Update.

• Network: Receive Internet Data, Send Data to the
Internet.

• Filesystem: Read from a File, Write to a File.
• DeviceId: Get Device ID.

MOSES supports also information flow control us-
ing the tainting mechanism provided by Taintdroid.
Policies can include the optional attribute Taint to
specify the taint type associated with the data ac-
cessed by the subject.

The Target attribute represents the resourced that is
being accessed. It can have either fixed or volatile val-
ues. Values such as LocationProvider and DeviceId
are fixed and correspond to GPS and IMEI. In the
case of ContentProvider, Network and Filesystem the
Target values are volatile. This means that a target may
be specified partially. For instance, for the Filesys-
tem the user can specify the following partial target
[/data/data/<package>/*]. We developed these
volatile targets to allow the system to enforce different
behaviour for the targets that differs only partially.
If a user wants to specify different access behaviour,
for instance, for a directory and its subdirectory, she
should create a separate policy rule for the directory
and another one for the subdirectory.

SP-Name attribute represents the SP name where the
policy is valid.

The decisions that can be specified to policy rules
are: ALLOW, DENY and ALLOW_WITH_PERFORM. The
effects of the first two are obvious. The decision
ALLOW_WITH_PERFORM corresponds to allow with a
restrictive obligation that performs additional action
of the data returned by the operation. For instance,
for “Get Device ID” operation a function can be
chosen that will obfuscate the real IMEI of the device.
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The functions and their implementations are specified
in a special built-in library. ALLOW_WITH_PERFORM
decision manage to enforce security constraints spec-
ified in the profile minimizing the impact on already
installed applications.

It is possible that two or more rules may be de-
fined for the same attribute values. To resolve these
conflicts, the user should also assign a priority value
to each rule. In this case, the decision of the rule with
the highest priority will have precedence over the
decisions of other rules; in the case of equal priorities,
then the last inserted rule takes priority.

For some combinations of attribute values, it might
be the case that no rules apply. In this case, our system
uses a default decision value (either allow or deny),
which is assigned to the SP.

6.5 Security Profile Management

To give a user the ability to manage the SPs in her
device, the MosesPolicyGui application is developed.
This is a system application signed with a system key
and assigned with a special permission. This allows
MosesPolicyGui application to communicate with the
MosesPolicyManager and manage the SPs. Figure 2 pro-
vides several screenshots of the application running
on a device. Due to the lack of space, we will not show
screenshots of all activities the application provides.1

The MosesPolicyGui manages Contexts and SPs. We
develop an application that allows a user to easily
configure MOSES functionality. Figure 2(a) shows
how to create a new Context definition. The user
specifies the name of a Context and the parameters
of the sensors used to detect the context around the
device.

To define a new SP the application provides a wiz-
ard that guides the user through the steps. Figure 2(b)
shows the first activity of this wizard. In this activity,
the user has to define the name of a profile, the default
decision and the profile priority. The screenshot in
Figure 2(c) shows how to assign applications to the
SP. Finally, Figure 2(d) shows how to create an ABAC
policy rule to deny the browser (UID 10036) to access
Google’s homepage.

7 MOSES EVALUATION

In this section, we report on the thorough experiments
we run to evaluate the performance of MOSES. For all
the experiments, we used a Google Nexus S phone.

7.1 Energy overhead

To measure the energy overhead produced by
MOSES, we performed the following tests. We
charged the battery of our device to the 100%. Then,
every 10 minutes we run four system applications (se-
quentially) via a monkeyrunner [54] script: Calculator,

1. The demo presented at [52] is available on our website [53].
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Browser, Contacts and Email. For each of them the
script performed common operations representative
for the applications (multiplication of numbers in case
of Calculator, browsing several webpages in case of
Browser, calling a number and creating an account
in case of Contacts, and composing and sending a
email in case of Email application). Each experiment
lasted for a total of 120 minutes. We executed this
experiment for three types of systems: Stock Android,
MOSES without SP changes, and MOSES with SP
changes (the system switched between two profiles
every 20 minutes).

During each experiment, every 10 seconds, our ser-
vice measured the level of the battery and wrote this
value into a log file. For each of the three considered
systems, we executed the test 10 times and averaged
the obtained values. The results of this experiment are
reported in Figure 3. We note that the curves for the
three considered systems behave similarly. This shows
that the fact that MOSES is just running, or even
switching between context does not incur a noticeable
energy overhead.

7.2 Storage overhead

One of the most significant overheads produced by
MOSES is the storage overhead. In fact, the separation
of data for different SPs means that some application
information will be duplicated in different profiles.

In general, the storage size consumed by a system
can be expressed by the following equation:

size = size(OS)+
k∑

j=1

size(AEj)+
k∑

j=1

size(ADj), (1)

where OS is the operating system, AEj and ADj ,
are the application executables and the application
data or the jth application. In the specific case of
MOSES, size(AD) is equal to:
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size(ADMOSES) =
n+1∑

i=1

k∑

j=1

(size(ADij)), (2)

where size(ADij) is the size of the data of the
jth application in the ith SP, k is the number of
installed applications, and n is the number of SPs. One
additional copy of application data (i.e., the (n + 1)-
th one) is required to store initial information of all
applications. If a new SP is created, we need a “clean”
copy of application data to be replicated into this new
profile. Hence, MOSES stores a copy of application
data just after the installation of the application: this
copy is later used for replication when a new SP
is created. It should be mentioned that for MOSES
only the initial data of applications are duplicated.
The data produced by applications during runtime
are not replicated between SPs. Secondly, the data of
applications, which are not allowed in a profile, are
not copied into the profile.

When comparing MOSES with competitor ap-
proaches, MOSES produces less storage overhead. For
instance, in case of mobile virtualization [40], [41],
[42] not only application data are duplicated (as for
MOSES), but also application executables and an op-
erating system (sometimes partially [9]). Dual persona
approaches [29], [30], [34], [35] additionally should
have a separate copy of application executables in
different profiles. Thus, MOSES adds less overhead
comparing to this set of approaches because it only
works with one copy of application executables.

Moreover, other improvements (currently left as
future works) are possible for MOSES, e.g., currently
for each SPs MOSES stores its own copy of the
shared libraries of an application, instead they could
be shared among the different profiles.

7.3 Microbenchmark

To assess the overall performance of our system, we
decided to run a set of experiments with a bench-
marking system. In particular, we used the Java mi-
crobenchmark CaffeineMark (version 3.0) [55] ported
on the Android platform. This benchmark runs a set
of tests which allows a user to assess different aspects
of virtual machine performance. The benchmark does
not produce absolute values for the tests. Instead it
uses internal scoring measures, which are useful only
in case of comparison with other systems. The overall
score of CaffeineMark 3.0 is a geometric mean of all
individual tests. That is why, to assess MOSES we
decided to compare it with Stock Android system
(version 2.3.4 r1) and Taintdroid system [4] (based
on the Android system version 2.3.4 r1). We included
in the comparison Taintdroid because MOSES incor-
porates its functionality, so we wanted to highlight
the additional overhead that MOSES introduces com-
pared to Taintdroid. We ran each benchmark 10 times.

For CaffeineMark 3.0 Java benchmark the observed
results are reported in Figure 4. From the figure,
we notice that the results for Taintdroid and MOSES
are almost the same: the checks that MOSES im-
plements on top of Taintdroid do not have a sig-
nificant influence on the results of this benchmark.
Meanwhile, the difference of overall scores between
unmodified (Stock Android) and modified systems
(either Taintdroid or MOSES) is quite big. In fact, we
can observe the performances are reduced by a 34%:
the benckmark scores are 5910.7 for Stock Android,
while 3895.9 for Taintdroid and 3923.3 for MOSES, the
main contributors to this overhead are Loop (about
51% overhead) and Float (48%) tests.
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7.4 Security Profile Switch Overhead

In this section, we present the results of the experi-
ments measuring the time required to switch between
SPs. We remind that during the profile switch (from
an ”old” to a ”new” profile), MOSES performs the
following operations: the unmounting of the data
folders of the old profile, the mounting of data folders
of the new profile, the unloading of the old and
the loading of the new Special Rules. Therefore, the
time to switch between SPs should depend on the
number of Special Rules and the number of user apps.
To find out the dependency between the time and
these parameters we ran two sets of experiments.
First, we measured the time required to switch SPs
varying the number of user applications. Then, we
did the same measurement while changing the num-
ber of Special Rules. To measure this time, we put
a call SystemClock.elapsedRealtime() before
and after the switching operations, and calculated
the difference between the values produced by this
function.

To explore the dependency between the time and
the number of applications we varied the number of
user applications from 0 to 10. For each number of
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applications, a clean MOSES system was used (i.e.
the system had been flashed on the phone just before
the experiment). Then, a SP was created allowing all
applications to be launched. Then, we measured the
time of switch between this new profile and DEFAULT

SP. For each number of applications we repeated the
switch for 20 times and then calculated the average
time of the switch. For all experiments the same set
of 10 applications was used.

The results are shown in Figure 5(a). From this
figure, we observe that the switching time increases
with the number of applications: moving from 1962
ms for 0 applications to 3496 ms for 10 applications.
The rise of the time is associated with the increase
of mounting and unmounting operations that MOSES
performs during the switch (see Section 6.2). Further-
more, we note that the time is not uniformly rising
with the growth of the number of applications. In
particular, after the third application we observe a
sharp increase of the function. The explanation of this
phenomena is the following. The third application
(named com.antivirus) after the installation starts
a service that opens a file (google_analytics.db)
and keeps it opened. Thus, MOSES has to kill the
service before the unmounting could be performed
successfully. In fact, MOSES system is designed in
such a way that at first it simply tries to unmount the
folder. Then, if this operation is unsuccessful, it sends
to the blocking process a SIGTERM signal and tries to
unmount again. If this try fails then MOSES kills the
process, which holds a file opened, and performs the
unmounting. Between the different tentatives, MOSES
sleeps for 200 ms. We observe that the main time over-
head is brought by these unsuccessful unmountings.
The spread between 3 and 10 applications is merely
about 250 ms.

The second experiment was conducted similarly to
the first one, but in this case we varied the number
of Special Rules assigned to a new SP : from 0 to 100,
increasing by 10 rules each time. The results of this
experiment are reported in Figure 5(b). As we can
see, the time of the switch slowly increases with the
increase of the number of rules. We can also note
that the standard deviation for the reported values

is significant.
We also noticed that the time for the first change of

profiles is considerably higher than for the following
switches (although this cannot be inferred from the
graphics which report average values). For instance,
for 5 applications the time of the first switch is 9172
ms while for the second is just 3431 ms. In fact, during
the first switch, for each application MOSES has to
copy the initial data of an application to a new profile.
That is why, the time for the first switch is several
times higher than for the following switches. This
fact also explains the wide spread of the standard
deviation on the graphics.

7.5 Overheads of fine-grained control

As for MOSES fine-grained control overhead, it is
mainly due to the checks of ABAC rules. To assess
this overhead, we developed three different appli-
cations. The first application gets the IMEI of the
phone, and stores it into the Android log. The sec-
ond app reads the information about 10 contacts
from the address book of a phone. The third one
writes 1000 characters in a file. We measured the
time of the checked operation using system function
SystemClock.elapsedRealtime(). We ran these
applications on different systems: Stock Android,
Taintdroid (version 2.3.4) and on several variants of
MOSES system, which differ from each other by the
number of ABAC rules. In particular, we varied the
number of rules for each app from 0 to 100, therefore,
the total number of rules in the system changed from
0 to 300 (since there were three different applications).
All ABAC rules for an app were the same. An example
of ABAC rule for filesystem application (MsFsTester)
is provided in Listing 2. During the assignment of
the rules to SP, we assigned the same priority to all
of them. We underline that this means considering
the worst case, since during the check MOSES has to
consider each rule. For each system, we ran each type
of check for 1000 times and calculated the average,
standard deviation and overhead for each variant of
the systems. The results are summarized in Table 1.
Moses 010 in “System” column means that there are
10 ABAC rules for each considering operation result-
ing to total 30 rules entered into the system. Similarly,
Moses 000 means that there are no rules in MOSES
system assigned to the current SP.

1 "UID of MsFsTester" "Write to a File" "/data/data/org.

mosesdroid.msfstester/files/test"

2 "ALLOW" with scope "WORK"

Listing 2. Example of ABAC rule

The developed applications represent three differ-
ent check strategies that are implemented in MOSES.
As described in Section 6.4, for each operation which
MOSES can check, there is a separate class imple-
mented in the framework library. According to the
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TABLE 1

Operation time: average (AV), standard deviation (SD), overhead (OV)

SYSTEM Operations
Get Device ID Query ContentProvider Write to a File

AV, ms SD, ms OV, % AV, ms SD, ms OV, % AV, ms SD, ms OV, %
Stock Android 1.018 0.700 0.00 10.516 7.653 0.00 0.818 2.893 0.00

Taintdroid 1.190 0.775 16.90 12.768 8.140 21.41 0.821 2.921 0.37
Moses 000 1.854 0.896 82.12 20.228 8.682 92.35 1.890 2.760 131.05
Moses 010 1.948 0.954 91.36 20.444 9.155 94.41 2.154 2.808 163.33
Moses 020 1.951 0.911 91.65 20.721 9.419 97.04 2.190 2.777 167.73
Moses 030 2.003 1.876 96.76 20.820 8.849 97.98 2.240 2.891 173.84
Moses 040 2.020 0.905 98.43 20.879 9.362 98.55 2.368 2.786 189.49
Moses 050 2.018 0.849 98.23 20.772 9.039 97.53 2.459 2.856 200.61
Moses 060 2.018 0.907 98.23 21.018 9.188 99.87 2.459 2.624 200.61
Moses 070 2.027 1.094 99.12 20.894 8.792 98.69 2.586 3.249 216.14
Moses 080 2.036 0.893 100.00 21.195 9.323 101.55 2.619 2.716 220.17
Moses 090 2.117 0.775 107.96 21.405 9.483 103.55 2.640 2.661 222.74
Moses 100 2.127 0.873 108.94 21.096 8.937 100.61 2.654 2.526 224.45

first strategy, the hook for MOSES check is embedded
into the framework library. In this case, the hook
simply calls the check method of the corresponding
operation class and enforces the result of the check.
For instance, this strategy is used for “Get Device
ID” operation check. In the second strategy, the hook
is also placed into the framework library, but in
the corresponding operation classes the additional
checks against ContentProvider’s shadow database are
performed. A representative of this strategy is the
check of “Query ContentProvider” operation. In the
third strategy, the hook is placed into the core library
while the check is performed in the framework li-
brary. The call of the check method in the correspond-
ing operation class is performed using Java reflection.
The strategy is used for “Write to a File” operation
check. Thus, MsImeiTester, MsCpTester and MsFsTester
were developed to assess the overheads of these three
strategies correspondingly.

Comparing the results obtained for Stock An-
droid, Taintdroid and Moses 000, we can see that the
main time overheads are added by MOSES operation
checks. In fact, Taintdroid adds 16.9% time overhead
in case of “Get Device ID” operation, 21.4% for
“Query ContentProvider” and 0.4% in case of “Write
to a File” operation, while MOSES even with no
ABAC rules adds 82.1%, 92.4% and 131.1% overheads
correspondingly comparing with Stock Android. Fur-
ther, the results show that the most time consuming
operation check is “Write to a File”. Not surprisingly,
because Java reflection used in the third MOSES check
strategy is a quite expensive operation.

As we expected, time overheads grow if we increase
the number of rules. We can see that Moses 000 adds
82.1%, 92.4% and 131.1% overheads. At the same time,
Moses 100 adds 108.9%, 100.6% and 224.5%. We can
see that relative overhead for “Get Device ID” op-
eration is higher than for “Query ContentProvider”.
On the other hand, the absolute overhead is 0.273 ms
for the first operation and 0.868 ms for the second
operation. Thus, the small percentage in case of the

second operation can be explained simply by the fact
that it takes more time to process the results of the
operation in the test application.

The absolute values of overheads of our three op-
erations between Moses 000 and Moses 100 are 0.273
ms, 0.868 ms and 0.764 ms, respectively. The difference
between the values is connected with the fact that it
takes different time to process target attribute type
in case of fixed and volatile targets. In case of fixed
target, there is no need to compare the attribute value
with the pattern. On the contrary, in case of volatile
target MOSES has to compare the target value with the
pattern in each relevant ABAC rule.

We assume that in a production system the total
number of rules for a SP may be higher then the maxi-
mum number considered in our experiments (because
the number of applications in a production system
might be higher). At the same time, the number of
rules for a tuple (UID, Operation) is smaller in real-
world scenarios than considered in our experiments.
So as the tuple (UID, Operation) serves as an index in
our system, the number of rule checks in a production
system, which causes the main part of the time over-
head, will be smaller than in the considered number
during the experiments. Therefore, we assume that
the main part of time overhead in a real-world system
will be caused not by the number of ABAC rules
in the system but by the embedded MOSES check
itself. Unfortunately, this is the price we have to pay
providing additional security mechanisms.

8 CONCLUSIONS AND FUTURE WORK

MOSES is the first solution to provide policy-based
security containers implemented completely via soft-
ware. By acting at the system level we prevent ap-
plications to be able to bypass our isolation. How-
ever, at the present moment MOSES has also some
limitations. At first, fine-grained policies and allowed
applications are specified using the UID of an applica-
tion. Meanwhile, in Android it is possible that some
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applications share the same UID. Thus, if we apply
MOSES rules and restrictions to one application they
automatically will be extended to the other ones with
same UID. Furthermore, some fine-grained policies in
MOSES are built on top of Taintdroid [4] functionality.
Thus, MOSES inherits the limitations of Taintdroid
explained in Section 3. It should be also mentioned
that the applications that have root access to the
system can bypass MOSES protection. Thus, MOSES
is ineffective in combating with the malware that
obtains root access, e.g., rootkits.

MOSES can also be improved in several aspects.
For instance, to make the policy specification process
easier, a solution could be to embed into the system
policy templates that can be simply selected and asso-
ciated to an application. It should be also mentioned
that currently MOSES does not separate system data
(e.g., system configuration files) and information on
SD cards. In the future we plan to add this function-
ality to the system. Moreover, performance overheads
are also planned to be reduced considerably in the
future versions.

9 ACKNOWLEDGEMENTS

Mauro Conti is supported by a EU Marie Curie
Fellowship for the project PRISM-CODE (grant n.
PCIG11-GA-2012-321980). This work has been par-
tially supported by the TENACE PRIN Project (grant
n. 20103P34XC) funded by the Italian MIUR.

REFERENCES

[1] Gartner says smartphone sales accounted for 55 percent of
overall mobile phone sales in third quarter of 2013. [Online].
Available: http://www.gartner.com/newsroom/id/2623415

[2] Are your sales reps missing important sales opportuni-
ties? [Online]. Available: http://m.sybase.com/files/White
Papers/Solutions SAP Reps.pdf

[3] Unisys establishes a Bring Your Own
Device (BYOD) policy. [Online]. Avail-
able: http://www.insecureaboutsecurity.com/2011/03/14/
unisys establishes a bring your own device byod policy/

[4] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones,” in
Proc. of OSDI’10, 2010, pp. 1–6.

[5] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks:
Automatically detecting potential privacy leaks in Android
applications on a large scale,” in Proc. of TRUST’12, 2012, pp.
291–307.

[6] Y. Xu, F. Bruns, E. Gonzalez, S. Traboulsi, K. Mott, and
A. Bilgic, “Performance evaluation of para-virtualization on
modern mobile phone platform,” in Proc. of ICCESSE 2010,
2010.

[7] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Pe-
ter, “L4Android: a generic operating system framework for
secure smartphones,” in Proc. of SPSM’11, 2011, pp. 39–50.

[8] T. U. Dresden and U. of Technology Berlin, “L4Android.”
[Online]. Available: http://l4android.org/

[9] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells: a
virtual mobile smartphone architecture,” in Proc. of SOSP’11,
2011, pp. 173–187.

[10] Android. [Online]. Available: http://www.android.com/
[11] W. Enck, M. Ongtang, and P. McDaniel, “Understanding An-

droid security,” IEEE Security and Privacy, vol. 7, no. 1, pp.
50–57, 2009.

[12] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and
C. Glezer, “Google Android: A comprehensive security assess-
ment,” IEEE Security and Privacy, vol. 8, pp. 35–44, 2010.

[13] M. Nauman, S. Khan, and X. Zhang, “Apex: extending An-
droid permission model and enforcement with user-defined
runtime constraints,” in Proc. of ASIACCS’10, 2010, pp. 328–
332.

[14] M. Ongtang, S. McLaughlin, W. Enck, , and P. McDaniel,
“Semantically rich application-centric security in Android,” in
Proc. of ACSAC’09, 2009, pp. 73–82.

[15] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich,
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