
Improving the Security of

the Android Ecosystem

Yury Zhauniarovich

Advisor:

Bruno Crispo

University of Trento

Agenda

 Introduction

 Providing Software and Data Isolation on
Android

 Enabling Attestation Service for the Android
platform

 Detecting Repackaged Android Applications

 Analyzing Android Apps in the Presence of
Dynamic Class Loading and Reflection

 Summary

2

What is Smartphone?

 Have “phone” capabilities

 Equipped with different sensors

 Can run third-party applications

 Controlled by a special mobile operating system

3

Smartphone is a source of very
sensitive user information

Why Android?

 On about 82% of all new mobile devices

 1+ billion devices activated

 1+ million apps on Google Play

 Open source

 Open ecosystem

 Numerous third-party markets of different
flavors (F-Droid, Yandex.Store, Amazon, etc.)

4

Agenda

 Introduction

 Providing Software and Data Isolation on
Android

 Enabling Attestation Service for the Android
platform

 Detecting Repackaged Android Applications

 Analyzing Android Apps in the Presence of
Dynamic Class Loading and Reflection

 Summary

5

MOSES: Motivation

 Same device multiple virtual environment
(e.g., in BYOD scenarios)

 Demand to increase the control over the
capabilities of third-party apps, e.g., prohibit
access to location

 Lack for context-based enforcement of
security policies on Android

 Absence of remote control over virtual
environments by the owners

6

MOSES: State Of the Art

 Secure containers

– e.g., Aurasium by R.Xu et al. (USENIX Security ’12)

– usually, 2 virtual environment (private and work)

– app rewriting usage

 Mobile paravirtualization

– e.g., L4Android by M.Lange et al. (ACM SPSM ’11)

– predefined number of operation modes

– battery-consuming solutions

 Linux containers

– e.g., Cells by J.Andrus et al. (ACM SOSP ’11)

– switching requires user interaction

– virtual environments are hard-coded

7

MOSES: Problem

Issue 1: How to provide several virtual
environments

 on the same device

– users are not willing to carry several devices

 that separate data and apps belonging to different
usage contexts

– app developers should not rewrite their apps according to
new rules

 managed by different owners

– e.g., working environment is controlled by company
administrators

 avoiding energy demanding (para)virualization
solutions?

– smartphones require long working time without recharging

8

MOSES: Idea

 IDEA: Provide a possibility to create virtual

environments (or Security Profiles (SP))

through policy-based framework so that

applications in one SP cannot access the

data of the same app in another SP. Ensure

the control over Security Profiles to the

owners. Equip SPs with an ability to enforce

fine-grained policies.

9

MOSES: Architecture

10

MOSES Configuration:

Security Profile Creation

11

create_profile “private” in_mode “permissive” with_priority “50”;

allow_apps “*”;

add_sr “browser_deny_receive_from_google” on_position “10”;
activate_in_context “home”;

MOSES Configuration:

Context Definition

12

create_context “home”;
condition [(latitude=“55”) AND (longitude=“11”) AND (radius=“1000m”)];

MOSES Configuration:

Special Rule Creation

13

create_sr “browser_deny_receive_from_google”;

action “deny”;

package “com.google.android.browser”;

operation “receive internet data”;

target “google*”;
perform [];

MOSES: Contributions

 First policy-based solution for virtual environments
on Android

 Manual and context-based Security Profiles
activation

 Security Profiles and Contexts are not predefined,
users can configure them dynamically

 Possibility to confine applications using fine-grained
security policies

 Compatible with existing applications

14

Y. Zhauniarovich, G. Russello, M. Conti, B. Crispo, E. Fernandes.

“MOSES: Supporting and Enforcing Security Profiles on Smartphones”.

In IEEE TDSC, to appear in 2014.

G. Russello, M. Conti, B. Crispo, E. Fernandes , Y. Zhauniarovich.

“Demonstrating the Effectiveness of MOSES for Separation of Execution

Modes”. In Proc. of CCS’12, 2012.

Agenda

 Introduction

 Providing Software and Data Isolation on
Android

 Enabling Attestation Service for the Android
platform

 Detecting Repackaged Android Applications

 Analyzing Android Apps in the Presence of
Dynamic Class Loading and Reflection

 Summary

15

TruStore: Motivation

 No possibility to prohibit the installation of
uncertified applications in BYOD scenarios

 Large number of third-party markets (Google
Play, Yandex.Store, F-Droid, etc.)

 Users trust more to the markets that perform
application vetting

16

TruStore: Problem

Issue 2: How to support an attestation service
on the Android platform maintaining

 the openness of the ecosystem,

– all markets should have the same possibility to
distribute their apps

– a user decides to which markets she trusts more

 backward compatibility with already
developed apps?

– app developers should not rewrite their apps
according to new rules

17

TruStore: Idea

18

 Apple centralized architecture

 IDEA: If an application has passed the

vetting process of a market, sign it with the

market certificate. Ensure on the client-side

that only applications signed with the

approved certificates can be installed on the

device.

 PROBLEM: Android has open ecosystem

TruStore: Approach

19

TruStore: Contributions

 We proposed an approach to support
attestation services for the Android platform:

– supports the open nature of the Android ecosystem

– does not change current development, signing and
publishing workflow

– can be applied to already developed applications

– allows to prohibit installation of uncertified apps in
BYOD scenarios

20

Y. Zhauniarovich, O. Gadyatskaya, B. Crispo. “DEMO: Enabling Trusted

Stores for Android”. In Proc. of CCS’13, 2013.

Agenda

 Introduction

 Providing Software and Data Isolation on
Android

 Enabling Attestation Service for the Android
platform

 Detecting Repackaged Android Applications

 Analyzing Android Apps in the Presence of
Dynamic Class Loading and Reflection

 Summary

21

Application Build Process

22

Device

Compilation

and

Packaging

Signing
Developer
certificate

Android Project

assets

AndroidManifest.xml

resources

source code

Android Package (.apk)

assets

AndroidManifest.xml

uncompiled resources

.dex

files

resources.

arsc

Repackaging

23

Android Package (.apk)

assets

AndroidManifest.xml

uncompiled resources

.dex

files

resources.

arsc

Developer
signature

Signing

Developer

certificate
(same)

Adversary

certificate
(different)

Rebranding
(good)

Plagiarizing
(bad)

Device

Motivation

 App repackaging is very easy on Android:

– Fetch an app  Disassemble  Change  Assemble 
Sign with own certificate  Publish

 The code of the application can be easily
changed

– smali/backsmali, AndroGuard, dex2jar, etc.

 Plagiarizing is used to:

– steal advertising revenues (14% of ad revenues)*

– collect user database (10% of user base)*

– malware distribution (86% of Android malware samples
use this distribution channel)**

24

* C.Gibler et al. “Adrob: examining the landscape and impact of Android application

plagiarism”. In Proc. of MobiSys ’13

** Y. Zhou, X. Jiang. “Dissecting Android malware: Characterization and Evolution”.

In Proc. of S&P ’12

Problem: Repackaging

Issue 3: How to detect repackaged Android
applications

 fast

– 1+ million apps only on Google Play

– 100+ third-party markets

– pair-wise comparison

 in effective way?

– need for a similarity metric to what extent one app is
similar to another

25

FSquaDRA: Idea

 Repackaged apps want to maintain the “look
and feel” of the originals

– Opera Mini fake app: 230 of 234 files are the same

 IDEA: compare apps based on the included
resource files (same files  same apps)

26

FSquaDRA: Approach

 Obtain hashes of all files inside two apps

 Calculate Jaccard index for the extracted
hashes:

27

 Compare the obtained value with a threshold

 PROBLEM: How to compute hashes
efficiently?

Hi – set of hashes of files in apk i

App Signing Internals

As a part of application signing process SHA1
digest of each file inside apk is calculated

28

FSquaDRA: Contributions

 We are the first who detect repackaged apps based on resource files

 Dataset: 55779 apps collected from 8 markets

 Faster than any known competitor

– DNADroid by J. Crussell et al. (ESORICS 2012) - 0.012 app pair/sec

• PDG subgraph isomorphism

• Hadoop MapReduce framework with a server and 3 desktops

– Juxtapp by S. Hanna et al. (DIMVA 2012) - 49.4 app pair/sec

• k-grams of opcodes  hashing  feature vector  Jaccard distance

• Intel Xeon CPU (8 cores) , 8GB of RAM

– Our approach - 6700 app pair/sec

 Our resource-based similarity score is highly correlated with the code-
based similarity score of AndroGuard (0.79 for plagiarizing, 0.58 for
rebranding)

29

Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina, E. Moser.

“FSquaDRA: Fast Detection of Repackaged Applications”.

In Proc. of DBSec’14, to appear in 2014.

Agenda

 Introduction

 Providing Software and Data Isolation on
Android

 Enabling Attestation Service for the Android
platform

 Detecting Repackaged Android Applications

 Analyzing Android Apps in the Presence of
Dynamic Class Loading and Reflection

 Summary

30

Dalvik VM

Dynamic Code Updates

31

Android Package (.apk)

assets

AndroidManifest.xml

uncompiled resources

.dex

files

resources.

arsc

DexFile.loadDex

Method.invoke
code files

(jar, dex,…)

1. Dynamic Class Loading (DCL)

2. Reflection

Motivation

 In Android, code loaded dynamically has the
same privileges as original

 Static analyzers cannot fully inspect an app in
the presence of dynamic code update features
(AndroGuard, Stowaway, PScout etc.)

 Heavily used by malware to conceal malicious
behavior

 Dynamic code update features are used:
– In legitimate applications

• Google Play: 19% - DCL, 88% - reflection

• Third-party markets: 6% - DCL, 74% - reflection

– In malicious applications

• Malware dataset: 20% - DCL, 81% - reflection

32

Problem: Dynamic Code Updates

Issue 4: How to analyze Android apps in the
presence of

 reflection,

– detect the name of the called function/class

 dynamic class loading?

– download and analyze the loaded code

33

StaDynA: Idea

 Apps with Dynamic Code Update features
expose their dynamic behavior at runtime

 IDEA: combine static and dynamic analysis
techniques to detect and explore dynamic
code update features

 Method Call Graph (MCG) is a directed
graph showing the calling relationships
between methods in a computer program

34

StaDynA: Approach

 Find API calls responsible for reflection and DCL
at static time (we call the methods calling these
API functions as Methods of Interest (MOI))

 Analyze their behavior at runtime

35

StaDynA: Overview

36

StaDynA: Features

 Stores and analyzes the
code loaded dynamically

37

DexFile.loadDex

Method.invoke

Tmp testMeth ()V

 Discovers at runtime the
qualifiers of the
methods/constructors
called through reflection

 Builds MCG of the app
including the information
obtained at runtime

 Discovers suspicious
behavior patterns SMS_SEND

SmsManager sendDataMessage

StaDynA: Contributions

 Dynamic code updates is a serious problem for
Android
– the code loaded dynamically has the same privileges

as the original application

 We proposed an approach that facilitates the
analysis of apps in the presence of reflection
and DCL
– discovers at runtime the qualifiers of the

methods/constructors called through reflection

– stores and analyzes code loaded dynamically

– builds MCG of the app including the information
obtained at runtime

– discovers suspicious behavior patterns

38

Summary

 A policy-based framework for enforcing software
isolation of applications and data on the Android
platform

 A mechanism to enable attestation services in
the Android ecosystem respecting its openness

 An approach to detect repackaged Android
applications

 A tool facilitating the analysis of Android
applications in the presence of dynamic code
update features

 All proposed solutions have implementations

39

Papers

1. Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina, E. Moser. “FSquaDRA:

Fast Detection of Repackaged Applications”. In Proc. of DBSec’14, to appear in 2014.

2. Y. Zhauniarovich, G. Russello, M. Conti, B. Crispo, E. Fernandes. “MOSES:

Supporting and Enforcing Security Profiles on Smartphones”. In IEEE TDSC, to

appear in 2014.

3. O. Gadyatskaya, F. Massacci, Y. Zhauniarovich. “Emerging Mobile Platforms: Firefox

OS and Tizen”. In IEEE Computer, to appear in 2014.

4. Y. Zhauniarovich, O. Gadyatskaya, B. Crispo. “DEMO: Enabling Trusted Stores for

Android”. In Proc. of CCS’13, 2013.

5. G. Russello, M. Conti, B. Crispo, E. Fernandes , Y. Zhauniarovich. “Demonstrating the

Effectiveness of MOSES for Separation of Execution Modes”. In Proc. of CCS’12,

2012.

6. M. Conti, B. Crispo, E. Fernandes, Y. Zhauniarovich. “CRePE: A System for Enforcing

Fine-Grained Context-Related Policies on Android”. In IEEE TIFS, 2012.

7. G. Russello, B. Crispo, E. Fernandes and Y. Zhauniarovich. “YAASE: Yet another

Android security extension”. In Proc. PASSAT/SocialCom, 2011.
40

THANK YOU!

Questions…

41

