
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DIT - University of Trento

Improving the security of

the Android ecosystem

Yury Zhauniarovich

Advisor:

Prof. Bruno Crispo

Università degli Studi di Trento

April 2014

Acknowledgements

Doing a Ph.D. is not an easy task as it might seem to someone. In my case, it was

a taught and long process with lots of barriers. Without the support and advices of my

relatives, friends and colleagues I would have never reached the endpoint of this journey.

At the end of my thesis, it is a pleasant task to express my thanks to all those who

contributed in many ways to the success of this study and made it an unforgettable

experience for me.

First of all, I would like to thank my advisor Prof. Bruno Crispo for involving me

into the life of a researcher, for his support, good advices and fair feedback. Without his

supervision and constant help this dissertation would not have been possible.

During my PhD study I was lucky to work with other brilliant people: Mauro Conti,

Giovanni Russello and Fabio Massacci. I would like to thank them for their advices

and our discussions that helped to improve the quality of our works. Special thanks go to

Earlence Fernandes for introducing me into the world of the Android system development.

I offer my sincerest gratitude to Olga Gadyatskaya. Our collaboration has been being very

fruitful and I hope that our friendship will last for years.

I gratefully acknowledge my close friends: Siarhei Bykau, Maksim Khadkevich, Heorhi

Raik, and Ivan Tankoyeu. Their advices, support and encouragement have helped me to

pass this long journey. Together with Liudmila Palavinka, Dina Shakirova, and Viktoria

Tankoyeva they have become my Trento family. I would like to thank my friend Dmitry

Krivonos for not letting me down during the hard time. He showed me that every problem

could be solved, you just should not give up and keep searching for possibilities. I wish

to thank my flatmates Anton Philippov, Evgeniy Borovin, and Alexandr Garaga. In

addition, the words of gratitude go to the russian-speaking community in Trento and to

all my friends who stay in Belarus. I remember you all!

I would like to thank my sister. Her restless care, deep trust and support in all my

pursuits cannot be overestimated. Last but not least, my deep sincerest words of love go

to my parents. Throughout all my study at the University and all my life, they cheer me

on, celebrate each my accomplishment, and help me get through the hard periods of my

life in the most positive way. My dear sister, my Mom, and Dad, I love you and wish you

all the happiness!

Abstract

During the last few years mobile phones have been being replaced by new devices called

smartphones. A more “intelligent” version of a mobile phones, smartphones combine

usual “phoning” facilities with the functionality and performance of personal computers.

Moreover, they are equipped with various sensors, such as camera and GPS, and are open

to third-party applications.

Being almost all the time with their users, it is not surprising that smartphones have

access to very sensitive private data. Unfortunately, these data are of particular interest

not only to the device owners. Developers of third-party applications embed data collection

functionality either to feed advertising frameworks or for their own purposes. Moreover,

there are also adversaries aiming at gathering personal user information or performing

malicious actions. In this situation the users have a strong motivation to safeguard their

devices from being misused and want to protect their privacy.

Among all operating systems for mobile platforms, Android developed by Google is the

recognized leader. This operating system is installed on four out of five new devices. In

this thesis we propose a set of improvements to enhance security of the Android ecosys-

tem and ensure trustworthiness of the applications installed on the device. In particular,

we focus on the application ecosystem security, and research the following key aspects:

identification of suspicious applications; application code analysis for malicious function-

ality; distribution of verified applications to end-user devices; and enforcing security on

the device itself.

It was previously shown that adversaries often relied on app repackaging to burst the

proliferation of malicious applications. As the first contribution, this dissertation proposes

a fast approach to detect repackaged Android applications. If a repackaged application is

detected, it is necessary to understand whether it is malicious or not. Today Android

malware conceal their malicious nature using dynamic code update techniques, thus, static

analyzers cannot detect this vicious behavior. The second contribution of this work is a

static-dynamic analysis approach to discover and analyse apps in the presence of dynamic

code updates routines. To increase the user’s confidence in the installed apps, as the third

contribution we propose the concept of trusted stores for Android. Our approach ensures

that a user can install only the applications vetted and attested by trusted stores. Finally,

the forth contribution is the design and implementation of a policy-based framework for

enforcing software isolation of applications and data that may help to improve the security

of end-user devices.

Keywords

Smartphones; Android; security; repackaging; malware; static-dynamic analysis

Contents

1 Introduction 1

1.1 The Importance of Data Stored on Mobile Devices 1

1.2 Problem Statement . 2

1.3 Thesis Contributions . 5

1.3.1 Fast Detection of Repackaged Android Applications 5

1.3.2 Static-Dynamic Analyser of Android Apps in the Presence of Re-

flection and Dynamic Class Loading 6

1.3.3 Attestation Service for the Android Platform 6

1.3.4 Supporting and Enforcing Security Profiles in Android 7

1.4 Accepted Papers . 8

1.5 Thesis Structure . 8

2 Android Security 11

2.1 Android Stack . 11

2.2 Android General Security Description . 14

2.3 Android Security on the Linux Kernel Level 16

2.3.1 Application Sandboxing . 17

2.3.2 Permission Enforcement on the Linux Kernel level 18

2.4 Android Security on the Native Userspace Level 19

2.4.1 Android Booting Process . 20

2.4.2 Android Filesystem . 24

2.4.3 Native Executables Protection . 26

2.5 Android Security on the Application Framework Level 27

2.5.1 Android Binder Framework . 28

2.5.2 Android Permissions . 31

2.5.3 Permission Enforcement on the Application Framework level 33

2.6 Android Security on the Application Level 35

2.6.1 Application Components . 35

2.6.2 Permissions on the Application Level 38

2.6.3 Application Signing Process . 39

i

3 Fast Detection of Repackaged Android Applications 43

3.1 The Problem of Application Repackaging 43

3.2 Our approach . 45

3.2.1 The algorithm and implementation details 47

3.3 Dataset description . 48

3.4 Evaluation . 49

3.5 Cross-Market Repackaging . 56

3.5.1 Cross-market Comparison . 56

3.5.2 Application Clusters . 58

3.6 Related work . 59

4 Static-Dynamic Analyser of Android Apps 65

4.1 The Problem of Dynamic Code Updates 65

4.2 Study of Dynamic Code Updates in Apps 66

4.2.1 Google Play . 66

4.2.2 Third-party markets . 68

4.2.3 Malware . 69

4.3 Illustrative Example of Dynamic Code Update 70

4.4 An Overview of StaDynA . 70

4.5 Android Class loading overview . 73

4.5.1 Android Class Loaders . 74

4.5.2 Class Loading Process . 74

4.5.3 Android class loading peculiarities 74

4.6 Reflection . 75

4.6.1 Reflection usage in Android . 75

4.6.2 Reflection API . 76

4.7 Implementation . 77

4.7.1 The server part . 78

4.7.2 The client part . 81

4.8 Method Call Graph . 83

4.8.1 Method call graph description . 85

4.9 Evaluation . 87

4.9.1 Results on Benign Apps . 88

4.9.2 Results on Malware Samples . 89

4.10 Related Work . 91

5 Attestation Service for the Android Platform 95

5.1 The Problem of Absence of Attestation Service Infrastructure for Android 95

5.2 TruStore Overview . 97

ii

5.3 TruStore Implementation Details . 99

5.4 Android Application Management with TruStore 102

5.5 Related Work . 103

6 Supporting Security Profiles in Android 107

6.1 Virtual Environments for Smartphones . 107

6.2 Related Work . 109

6.2.1 Android security extensions . 109

6.2.2 Bring Your Own Device approaches 110

6.3 MOSES Overview . 113

6.4 Architecture . 114

6.5 Implementation . 116

6.5.1 Context Detection . 116

6.5.2 Filesystem Virtualization . 117

6.5.3 Dynamic Application Activation . 118

6.5.4 Attribute-based Policies . 119

6.5.5 Security Profile Management . 121

6.6 MOSES Evaluation . 122

6.6.1 Energy overhead . 122

6.6.2 Storage overhead . 123

6.6.3 Microbenchmark . 124

6.6.4 Security Profile Switch Overhead 125

6.6.5 Overheads of fine-grained control 127

7 Conclusion 131

7.1 Dissertation Summary and Future Work 131

7.1.1 Fast Detection of Repackaged Android Applications 132

7.1.2 Static-Dynamic Analyser of Android Apps in the Presence of Re-

flection and Dynamic Class Loading 133

7.1.3 Attestation Service for the Android Platform 134

7.1.4 Supporting and Enforcing Security Profiles 134

Bibliography 137

iii

List of Tables

3.1 Markets . 48

3.2 Summary statistics for comparison of AndroGuard and FSquaDRA simi-

larity metrics . 52

3.3 Summary statistics for comparison of AndroGuard and FSquaDRA simi-

larity metrics for 2200 randomly selected app pairs 58

3.4 Results of experiments, each market in comparison with Google Play . . . 58

4.1 Analysis of Google Play apps . 67

4.2 Analysis of third-party market apps . 68

4.3 Analysis of malware . 69

4.4 The list of searched API calls . 79

4.5 Description of apps used for evaluation . 88

4.6 Evaluation Results: Selected benign and malicious applications (Nodes and

Edges) . 89

4.7 Evaluation Results: Selected benign and malicious applications (Reflection,

DCL, Permissions) . 89

4.8 Evaluation: added dangerous permissions 90

6.1 Operation time: average (AV), standard deviation (SD), overhead (OV) . . 128

v

List of Figures

2.1 Android software stack . 12

2.2 Two levels of Android security enforcement 14

2.3 Android security architecture . 16

2.4 Android boot sequence . 22

2.5 Android Binder communication model [80] 29

2.6 Permission enforcement to guard the components of third-party applications 39

3.1 Distribution of number of files inside apk 46

3.2 Histogram of app repackaging rates detected with FSquaDRA (logarith-

mic scale) . 50

3.3 Scatterplot of FSquaDRA similarity between app pairs versus Andro-

Guard similarity for pairs signed with different certificates; the red line

is the line of best fit, the blue curve is the LOWESS (locally weighted

scatterplot smoothing line) . 53

3.4 Boxplot of the difference of FSquaDRA similarity between app pairs and

AndroGuard similarity for pairs signed with different certificates; for app

pairs with fss>0 . 54

3.5 Scatterplot of FSquaDRA similarity between app pairs versus Andro-

Guard similarity for pairs signed with same certificate; the red line is the

line of best fit, the blue curve is the LOWESS (locally weighted scatterplot

smoothing line). 55

3.6 Boxplot of the difference of FSquaDRA similarity between app pairs and

AndroGuard similarity for pairs signed with the same certificate; for app

pairs with fss>0. 56

3.7 Boxplot of the difference of FSquaDRA similarity between app pairs and

AndroGuard distance for app pairs signed with same and different certifi-

cates; for app pairs with fss=0. 57

3.8 Boxplot of the difference in the FSquaDRA similarity and the Andro-

Guard similarity for all randomly selected pairs (2200 pairs) 59

4.1 System overview . 72

vii

4.2 The StaDynA workflow . 78

4.3 The MCG of the app before StaDynA . 83

4.4 The MCG of the app after StaDynA . 84

4.5 FakeNotify.B MCGs: a) without StaDynA b) with StaDynA 92

5.1 The TruStore architecture: the steps with letters represent the Tru-

Store management process; those ones with numbers describe the checks

during app installation. 98

5.2 Screenshots of TruStore: (a) Settings to enable TruStore, (b) The

certificate list of trusted stores, (c) TruStoreList application, (d) Package-

Installer error when a package is not signed by TruStore certificate . . . 100

6.1 MOSES Architecture . 115

6.2 Screenshots of MOSES Profile Manager application: (a) Context creation,

(b) Security Profile creation, (c) Application assignment to a Security Pro-

file, (d) ABAC Rule creation . 120

6.3 Energy overhead . 123

6.4 CaffeineMark Java benchmark results (with standard deviation) 125

6.5 Time for profile switch (with standard deviation) as a function of the num-

ber of: (a) User applications, (b) Special Rules 127

viii

Chapter 1

Introduction

1.1 The Importance of Data Stored on Mobile Devices

Over the last decade the popularity of mobile phones has increased greatly. Today, on

average, there is almost one phone per human being. Harnessing the rapid development

of microelectronics, mobile phone manufacturers have started to produce more and more

powerful equipment, leading to so called smartphones, which are now almost computa-

tionally equal to modern desktop computers.

Smartphone is a device which combines the functionality of a cell phone and a per-

sonal computer. Checking emails, browsing the Internet, taking pictures, making video

and sharing the content are successfully carried out with the help of these gadgets. Fur-

thermore, smartphones are full of different sensors that enrich the user experience. This

situation resulted in very sensitive end-user data accumulated by smartphones. Unfortu-

nately, these data are of particular interest not only to the device owners. Also developers

of third-party applications collect data of their users [70, 84]. For example, advertising

frameworks collect data to profile customers and provide targeted and customized ads.

Moreover, there are also adversaries who develop applications to gather personal infor-

mation and perform malicious actions [156]. Not surprisingly, in this situation the device

owners have a strong interest in protecting their devices from being misused and want to

control the dissemination of personal data.

Smartphones are also now used as business tools. Being extensively used by users in

their daily life, not surprisingly they are also exploited in their daily business workflow.

The market research [53] shows that more and more companies provide the employees with

a possibility to use their own devices for business purposes. This trend is called Bring

Your Own Device (BYOD). The benefits of using personal devices for business purposes

are obvious for companies. This allows them to increase productivity and satisfaction of

employees along with decreasing the expenditures for the infrastructure [53]. With the

BYOD wave the problem how to integrate personal devices with the ability to perform

1

CHAPTER 1. INTRODUCTION

business tasks while ensuring security of business data also has also appeared.

Among all operating systems for smartphones we distinguish Android. This operating

system was initially developed by Android Inc., which was later acquired by Google. Only

6 years after the appearance of the first Android-based device this platform is installed on

about 82% of all new smartphones [20]. What is more important, this operating system

is open-source, i.e., it is possible to develop new features, test them on real devices and

submit for review, thus, contributing the improvements to the community. Moreover,

this allows researchers to explore easily the platform for breaches in the architecture.

Apparantly, lately this operating system has received a lot of attention in the security

research community; and Android has rapidly become a reference mobile platform for

research experiments.

These are the preliminary observations from which we begin the refinement of the

problems investigated in this dissertation.

1.2 Problem Statement

Although Android has been developed with security in mind, this operating system itself,

along with the ecosystem, still have some flaws and limitations that may contribute to

personal data leakage. For example, the permission system1, which is one of the main

security mechanisms on Android, appears to be not very user-friendly. First of all, per-

missions are not fine-grained. Secondly, they are assigned to an application only during

the installation based on the “all-or-nothing” principle, meaning that if a user does not

agree with all requested permissions she will not be able to install the app. Thirdly,

despite the importance of this security mechanism, recent studies (e.g., executed by Felt

et al. [75]) show that users pay little attention to the validation routines provided by the

platform: only 17% of users check application permissions during installation and only 3%

understand permissions. Finally, permissions cannot be revoked at runtime. Along with

the absence of so-called “prompt” permissions (which require the user to grant access to

a senstivie feature at runtime), all these problems create a very fruitful environment for

applications that want to steal user’s data.

Given the high value of personal data stored on mobile device, it is clear that adversaries

were also attracted. Yet, smartphone security mechanisms were proven to offer limited

protection against applications that can leak data. This poses a serious threat to sensitive

data, especially in case of corporate information. For example, malicious applications can

access emails, SMS and MMS containing confidential data of the company and the end-

user. Even more worrying is the number of legitimate applications harvesting the data

that are not strictly necessary for the functions the applications advertise to users [70,84].

1The permission system is a security control to guard access to sensitive device features and data. More details will be

provided later on.

2

1.2. PROBLEM STATEMENT

Moreover, the current architecture of the Android operating system does not offer a

possibility to enforce additional security policies, besides those offered by the platform by

default. For example, using different sensors a smartphone could recognise the environ-

ment, and could use this context to restrict the access to some information or capabilities

of a smartphone. This feature is especially important when a smartphone is used both as a

personal and business device. The recent market research [53] shows that more and more

companies allow the employees to use their own devices for business purposes. This trend

is a win-win situation both for employees and employers. From the business owner point

of view, this increases the productivity of the employees. From employees’ perspective,

the permission to use personal devices for executing business-related tasks allows to be

more efficient and increases gratification. According to [53], 69% of IT leaders support the

development of the BYOD trend. However, in this case the company wants to control the

behavior of devices during the working hours, while the users want to have total control

over them during the after office time.

All these facts lead us to the first issue raised in this thesis.

Issue 1 How to provide several virtual environments controlled by different parties on

the same real device? How to separate data and apps that belong to different sides of

user’s life? How to ensure the control over virtual environments for the owners of these

environments?

All these factors drive the research of Android security improvements on the operating

system side. However, there are also some limitations in the Android ecosystem. Due to

the openness of Android, third-party applications can be installed on a smartphone with-

out any limitations. While other players, such as Apple and RIM, addressed the problem

by running their certification schemes and vetting each application before being published

on their own (unique) market, Google chose a different path. In the spirit of openness to

third-party developers, Android apps do not need to be certified before being published

on any market. It is user’s responsibility to validate that the installed application will

not harm the device and will not steal user private information. Unfortunately, ordinary

users cannot make an unsupervised decision if an app can be trusted or not. However,

they want to be reassured that the app has passed a vetting process and does not contain

any harmful code that can steal personal data.

These aspects show a great demand for an app attestation service that will distribute

only benign applications. Moreover, companies may also want to ensure that employees

install only attested apps on their smartphones used in the business environment. Re-

grettably, due to the open nature of Android ecosystem, currently there are no facilities

on Android to provide this service. Therefore, the second issue investigated in this thesis

is:

3

CHAPTER 1. INTRODUCTION

Issue 2 How to provide an attestation service for the Android platform while maintaining

the open nature of the Android ecosystem?

All this, in turn, requires the research and development of verification techniques that

can be used to vet an app. Recently a lot of static analysis tools for Android applications

have appeared, for instance, [71, 152], to mention a few. Unfortunately, the analysis by

static tools can be easily evaded by exploiting dynamic code update features available

for app developers in Android. For instance, the Dynamic Class Loading facility may be

used to conceal virulent code in a separate file that is downloaded and executed runtime.

Thus, during static analysis of such application this malicious code is unreachable, and,

therefore, this app may be falsely marked as benign. Moreover, adversaries can postpone

the download of harmful payload until an application is actually published on a market,

thus, evading the dynamic analysis [117] performed by some markets (e.g., Google Play

checks applications using dynamic analysis service called Bouncer [107]). Another tech-

nique, Reflection, is used to hide the name of a called function, i.e., the name of a function

may be available for an application only during runtime. This technique may help an ad-

versary to bypass static analysers that rely on Method Call Graph of an application. Not

surprisingly, that the most advanced malware [99,155] use these techniques to conceal the

malicious behavior. Unfortunately, dynamic code update techniques cannot be simply

prohibited to use, because they are also widely exploited in benign apps. Thus, there is

a strong need for a tool which may help to analyse the applications with dynamic code

update features; and this is the third issue investigated in this thesis.

Issue 3 How to analyse Android applications in the presence of dynamic code update

features?

However, to affect users with malicious applications the intruders need an efficient way

to distribute their apps. Modern mobile devices are equipped with processors of different

architectures, for instance, ARM, x86, MIPS. These processors operate on different in-

struction sets, so the executables of applications should be compiled separately for each

of this platform. Android was designed to be used on a large variety of devices. It uses

the Dalvik virtual machine to interpret on a particular architecture the bytecode pro-

duced during the build of an Android app. Thus, it is possible to produce one executable

that may be run on different platforms. Unfortunately, this bytecode can be easily re-

verse engineered, changed and recompiled. This process in case of Android applications

is called repackaging. Moreover, due to the peculiarities of Android ecosystem (presence

of third-party markets and the usage of self-signed certificates to sign packages), de-facto

there are no obstacles to perform repackaging of the vast majority of Android apps. Any

developer may take an application, decompile it, change its parts or add her own code,

recompile it and publish under her credentials in a market.

4

1.3. THESIS CONTRIBUTIONS

Not surprisingly, the repackaging is a very popular channel to distribute malicious

apps. The study of Android malware [156] shows that about 86% of malware samples are

the repackaged versions of legitimate apps. Additionally to the distribution of malware,

repackaging may be used to steal money from the original developer. Recent analysis [85]

shows that the developers of original apps loose about 14% of advertisement revenues

and about 10% of the user base due to application plagiarism. All these facts show that

the Android ecosystem suffers from the intruders who repackage benign applications and

distribute them through third-party markets. Hence, the detection of repackaged appli-

cations and their removal at least from the official market is a first-order task. Regrettely,

there are more than 1 million apps [139] only in the official Google Play [22] market.

Along with the apps distributed over numerous third-party markets, this creates an in-

credibly huge dataset. In addition, each application may have several versions. All these

factors require an approach that can detect potentially repackaged applications in a fast

way. This is the fourth issue investigated in this thesis.

Issue 4 How to detect repackaged Android applications in a fast and efficient way?

1.3 Thesis Contributions

This work focuses on different aspects how to improve security of the Android operating

system and its ecosystem. The solutions proposed in this thesis are tightly interwoven

with the modifications of the Android OS. The issues raised in Section 1.2 are covered in

the reversed order. This approach allows us to comply with the usual workflow in security,

when the threats are identified, then analyzed, and after this mitigated. Similarly, in this

work we at first identify potential malicious applications (repackaged apps), then analyze

them for dynamic code update features, and later propose the solutions how to mitigate

the threat of malicious applications both on the market and on the device levels. The

thesis is structured in the way to highlight the main contributions done during the Ph.D.

study.

1.3.1 Fast Detection of Repackaged Android Applications

To address Issue 4 we developed a system called FSquaDRA. The system uses an ap-

proach to detect repackaged applications based on comparison of the resource files consti-

tuting an Android app package. The approach is based on the observation that malicious

repackagers usually do not change the resources of an Android package because they want

to resemble the original app as much as possible. Therefore, the code files may change

during the repackaging, while the resource files (icons, drawables, music and video files,

etc.) usually remain the same. Using the peculiarities of Android app signing process we

5

CHAPTER 1. INTRODUCTION

designed and implemented a very fast algorithm that can be used for pairwise comparison

of apps.

This contribution will appear in the paper [149]:

• Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina and E. Moser. “FSquaDRA:

Fast Detection of Repackaged Applications”. In Proceedings of the 28th Annual IFIP

WG 11.3 Working Conference on Data and Applications Security and Privacy (DB-

Sec’14), to appear in 2014.

1.3.2 Static-Dynamic Analyser of Android Apps in the Presence of Reflection

and Dynamic Class Loading

When suspicious candidates are identified, for instance, using the approach described

in Section 1.3.1, they have to be scrutinized with analysis tools. Unfortunately, static

analysis of Android applications can be hindered by the presence of the popular dynamic

code update techniques inherited from Java: dynamic class loading and reflection. For

example, recent Android malware samples specifically use dynamic code update routines

to conceal their malicious behavior from static analysis. These techniques defuse even

the most recent static analyzers (e.g., [68, 152]), which explicitly make the closed world

assumption.

To address Issue 3 we propose an approach that augments the information available

to static analyzers. It combines static and dynamic analysis of Android applications in

order to reveal the hidden/updated behavior, and extends the method call graph of the

application under analysis with this information. Moreover, our approach allows to unroll

the suspicious behavior located in the nested code files.

1.3.3 Attestation Service for the Android Platform

In the Android ecosystem the process of verifying the integrity of downloaded apps is left

to the user. Different from other systems, e.g., Apple App Store, Google does not provide

any certified vetting process for the Android apps. To address Issue 2 we designed an

architecture called TruStore that enables the deployment of application certification

service on the Android platform. In our approach, the TruStore client enabled on

the end-user device ensures that only the applications, which have been certified by the

TruStore server, are installed on the user smartphone. We envisage trusted markets

(TruStore servers, which can be, e.g., corporate application markets) that guarantee se-

curity by enabling an application vetting process. For instance, applications can be vetted

using our systems FSquaDRA and StaDynAdescribed in this thesis. The TruStore

infrastructure maintains the open nature of the Android ecosystem and requires minor

modifications to the Android stack. Moreover, it is backward-compatible and transparent

6

1.3. THESIS CONTRIBUTIONS

for developers, and does not change the application management process on a device.

Thus, the proposed approach allows us to include the vetting of Android applications into

the workflow, and provides a possibility to ensure that only vetted apps are installed on

user devices.

The conducted research is released as the demo-paper [147],while more information

can be found in the technical report [148]:

• Y. Zhauniarovich, O. Gadyatskaya and B. Crispo. “DEMO: Enabling Trusted Stores

for Android”. In Proceedings of the 2013 ACM SIGSAC conference on Computer &

Communications Security (CCS).

1.3.4 Supporting and Enforcing Security Profiles in Android

To address Issue 1 we implemented MOSES, a policy-based framework for enforcing

software isolation of applications and data on the Android platform. In MOSES, it is

possible to define distinct Security Profiles within a single smartphone. Each Security

Profile is associated with a set of policies that control the access to applications and data.

Moreover, each Security Profile can have an associated trusted third-party that specifies

the policies for the profile. Thus, a user may use MOSES for protecting the device

against malicious applications specifying the security policy for her personal profile, while

the policy for the device usage at work may be defined by the IT experts of the company.

As profiles are not predefined or hardcoded, they can be specified and applied at any time.

One of the main features of MOSES is the dynamic switching from one Security Profile

to another. This allows MOSES to automatically start enforcing the rules defined in the

policies for the profiles. This functionality, for instance, may be used by business owners

who want to ensure that entertainment and social network applications are not used by

their employees during the working hours.

This contribution is discussed in details in the paper [150], while the demo of the

system is presented in [124]:

• Y. Zhauniarovich, G. Russello, M. Conti, B. Crispo and E. Fernandes. “MOSES:

Supporting and Enforcing Security Profiles on Smartphones”. In IEEE Transactions

on Dependable and Secure Computing, to appear in 2014.

• G. Russello, M. Conti, B. Crispo, E. Fernandes and Y. Zhauniarovich. “Demonstrat-

ing the Effectiveness of MOSES for Separation of Execution Modes”. In Proceedings

of the 2012 ACM SIGSAC conference on Computer & Communications Security

(CCS).

7

CHAPTER 1. INTRODUCTION

1.4 Accepted Papers

1. [149] – Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina and E. Moser.

“FSquaDRA: Fast Detection of Repackaged Applications”. In Proceedings of the

28th Annual IFIP WG 11.3 Working Conference on Data and Applications Security

and Privacy (DBSec’14), to appear in 2014.

2. [150] – Y. Zhauniarovich, G. Russello, M. Conti, B. Crispo and E. Fernandes.

“MOSES: Supporting and Enforcing Security Profiles on Smartphones”. In IEEE

Transactions on Dependable and Secure Computing, to appear in 2014.

3. [79] – O. Gadyatskaya, F. Massacci and Y. Zhauniarovich. “Security in the Firefox

OS and Tizen Mobile Platforms”. In IEEE Computer, to appear in 2014.

4. [147] – Y. Zhauniarovich, O. Gadyatskaya, and B. Crispo. “DEMO: Enabling

Trusted Stores for Android”. In Proceedings of the 2013 ACM SIGSAC conference

on Computer & Communications Security (CCS).

5. [124] – G. Russello, M. Conti, B. Crispo, E. Fernandes and Y. Zhauniarovich.

“Demonstrating the Effectiveness of MOSES for Separation of Execution Modes”. In

Proceedings of the 2012 ACM SIGSAC conference on Computer & Communications

Security (CCS).

6. [62] – M. Conti, B. Crispo, E. Fernandes and Y. Zhauniarovich. “CRêPE: A Sys-

tem for Enforcing Fine-Grained Context-Related Policies on Android”. In IEEE

Transactions on Information Forensics and Security, 2012.

7. [125] – G. Russello, B. Crispo, E. Fernandes and Y. Zhauniarovich. “YAASE:

Yet Another Android Security Extension”. In Proceedings of the 2011 IEEE Third

International Conference on Privacy, Security, Risk and Trust (PASSAT) and the

2011 IEEE Third International Conference on Social Computing (SocialCom), 2011.

1.5 Thesis Structure

The thesis is structured to present the main contributions of the Ph.D. study. The rest

of the dissertation is organized as follows:

Chapter 2 discusses the security background of the Android operating system. The

deep understanding of the security mechanisms implemented in this operating

system sets the context for the reader to better understand the Android limita-

tions and the approaches solving them proposed in this work.

Chapter 3 presents FSquaDRA, an approach relying on the peculiarities of the

Android app signing process that we propose for fast detection of repackaged

applications.

8

1.5. THESIS STRUCTURE

Chapter 4 observes the problem of dynamic code updates in Android applications

and proposes a tool that, using a combination of static and dynamic analysis

techniques, is able to analyze Android applications in the presence of dynamic

class loading and reflection routines.

Chapter 5 researches how an attestation service can be implemented on the Android

platform. In this chapter we discuss how to ensure trustworthiness of Android

apps providing additional evidences that an application has been vetted.

Chapter 6 indicates how Security Profiles can be implemented on Android. It also

presents a framework that can be used to define fine-grained security policies for

each Security Profile enabling protection against applications that harvest sensi-

tive information. Additionally, the task of security policy enforcement depending

on the context is also considered in this chapter.

Chapter 7 recaps the main contributions described in this dissertation and reveals

the future work.

9

CHAPTER 1. INTRODUCTION

10

Chapter 2

Android Security

The comprehension of the Android security architecture is an essential premise for the

understanding the issues and the solutions covered in this thesis. This section considers

the basics of the Android architecture from the security perspective.

Code examples in this chapter are provided for Android 4.2.2 r1.2 version and for

Androlized Linux kernel 3.4 version.

2.1 Android Stack

Android is a software stack for a wide range of mobile devices and a corresponding open-

source project led by Google [38]. Android consists of four layers: Linux Kernel, Native

Userspace, Application Framework and Applications. Sometimes Native Userspace and

Application Framework layers are combined into the one called Android Middleware. Fig-

ure 2.1 represents the layers of the Android software stack. Roughly saying, in this figure

the green blocks correspond to the components developed in C/C++, while the blue co-

here with the ones implemented in Java. Google distributes the most part of the Android

code under Apache version 2.0 licence. The most notable exception to this rule is the

changes in the Linux Kernel, which are under GNU GPL version 2 licence.

Linux Kernel. Before being acquainted by Google in 2005, Android was a startup product

of the Android Inc. company. One of the features of startup companies is their tendency

to maximise the reuse of already existing components to reduce the time and the cost of

their product. So did Android Inc. selecting the Linux Kernel as a centerpiece of their new

platform. In Android, Linux Kernel is responsible for process, memory, communication,

filesystem management, etc. While Android mostly relies on the “vanilla” Linux Kernel

functionality, several custom changes, which are required for the system operation, have

been proposed to this level. Among them Binder (a driver, which provides the support

for custom RPC/IPC mechanism in Android), Ashmem (a replacement of the standard

11

CHAPTER 2. ANDROID SECURITY

Ashmem Wakelocks Logger
Binder (IPC)

Driver

Camera driver Audio driver Display driver ...

Contacts

Browser

Applications

System apps User apps

Launcher2

...

Settings

Phone

Facebook

Chrome

Evernote

...

Dropbox

Feedly

ContentProviders

Application Framework

Android Framework Libraries

Java core libraries

PowerManager

...LocationManager

PackageManager

Apache

Harmony

ResourceManager

ActivityManager

Service

System Services

PowerManager

Service

...
Connectivity

Service

PackageManager

Service

Battery

Service

Dalvik VM / Android Runtime / Zygote

Native Userspace

Hardware

Abstraction

Layer

Init /

Toolbox

Native

Daemons

Native

Libraries

Linux Kernel

Binder

API

JNI

Figure 2.1: Android software stack

Linux shared memory functionality), Wakelocks (a mechanism that prevents the system

from going to sleep) are the most notable ones [144]. Although these changes proved to

be very useful in case of mobile operating systems, they are still out of the main branch

of Linux Kernel.

Native Userspace. By the Native Userspace we understand all userspace components that

run outside Dalvik Virtual Machine and do not belong to the Linux Kernel layer. The

first component of this layer is Hardware Abstraction Layer (HAL) that is actually blurred

between the Linux Kernel and Native Userspace layers. In Linux, drivers for hardware are

either embedded into the kernel or loaded dynamically as modules. Although Android is

built on top of Linux Kernel it exploits a very different approach to support new hardware.

Instead, for each type of hardware Android defines an API that is used by upper layers

12

2.1. ANDROID STACK

to interact with this type of hardware. The suppliers of a hardware must provide a

software module that is responsible for the implementation of the API defined in Android

for this particular type of hardware. Thus, this solution allows Android not to embed all

possible drivers into the kernel anymore and to disable the dynamic module loading kernel

mechanism. The component, which provides this functionality, has been called Hardware

Abstraction Layer in Android. Additionally, such architectural solution lets hardware

suppliers to select the licence, under which their drivers are distributed [143,144].

Kernel finishes its booting by starting only one userspace process called init. This

process is responsible for starting all other processes and services in Android, along with

performing some operations in the operating system. For instance, if a critical service stops

answering in Android, the init process can reboot it. This process performs operations in

accordance to the init.rc configuration file. Toolbox includes essential binaries, which

provide shell utilities functionality in Android [144].

Android also relies on a number of key daemons. It starts them during system startup

and preserves them running, when the system is working. For instance, rild (the Radio

Interface Layer daemon, responsible for communications between baseband processor and

other system), servicemanager (a daemon, which contains an index of all Binder services

running in Android), adbd (Android Debug Bridge daemon that serves as a connection

manager between host and target equipment), etc.

The last but not least component in Native Userspace is Native Libraries. There are

two types of Native Libraries : native libraries that come from external projects, and

developed within Android itself. These libraries are loaded dynamically and provide

various functionality for Android processes [144].

Application Framework. Dalvik is Android’s registry-based virtual machine. It allows the

operating system to execute Android applications, which are written using Java language.

During the built process, Java classes are compiled into a .dex file that are interpreted

by the Dalvik VM. The Dalvik VM was specifically designed to be run in constrained

environments. Additionally, the Dalvik VM provides functionality to interact with the

rest of the system, including native binaries and libraries. To accelerate the process

initialization procedure Android exploits a specific component called Zygote. This is a

special “pre-warmed” process that has all core libraries linked in. When a new app is

about to run, Android forks a new process from Zygote and sets the parameters of the

process according to the specification of the launched application. This solution allows

the operating system not to copy linked libraries into a new process, thus, speeding up

app launching operation. Java Core Libraries, which are used in Android, are borrowed

from Apache Harmony project.

System Services is one of the most important parts of Android. Android comes

with a number of System Services that provide basic mobile operating system func-

13

CHAPTER 2. ANDROID SECURITY

tionality to be used by Android app developers in their applications. For instance,

PackageManagerService is responsible for managing (installation, update, deletion, etc.)

Android packages within the operating system. Using JNI interfaces system services can

interact with the daemons, toolbox binaries and native libraries of the Native Userspace

layer. The public API to System Services is provided via Android Framework Libraries.

This API is used by application developers to interact with System Services.

Android Applications. Android applications are software applications that run on An-

droid and provide most of the functionality available for the user. The stock Android

operating system is shipped with a number of built-in apps called System Applications.

These are applications compiled as a part of AOSP built process. Moreover, the user may

install User Applications from numerous app markets to extend basic and introduce new

functionality to the operating system.

2.2 Android General Security Description

The core security principle of Android is that an adversary app should not harm the

operating system resources, the user and other applications. To procure the execution

of this principle, Android being a layered operating system, exploits the provided secu-

rity mechanisms of all the levels. Focusing on security, Android combines two levels of

enforcement [72, 129]: at the Linux Kernel level and at the Application Framework level

(see Figure 2.2).

Linux

Kernel

Android

Middleware

App 1

MAC

ApplicationsApp 2

DAC

DAC

IPC

FileSystem

Socket

Figure 2.2: Two levels of Android security enforcement

At the Linux Kernel level each application is run in special Application Sandbox. The

kernel enforces the isolation of applications and operating system components exploit-

ing standard Linux facilities (process separation and Discretionary Access Control over

14

2.2. ANDROID GENERAL SECURITY DESCRIPTION

network sockets and filesystem). This isolation is imposed by assigning each applica-

tion a separate Unix user (UID) and group (GID) identifiers. Such architectural decision

enforces running each application in a separate Linux process. Thus, due to Process Iso-

lation implemented in Linux, by default applications cannot interfere each other and have

limited access to the facilities provided by the operating system. Therefore, Application

Sandbox ensures that an application cannot drain the operating system resources and

cannot interact with other apps [6].

The enforcement mechanism provided at the Linux Kernel layer effectively sandboxes

an application from other apps and the system components. At the same time, an effective

communicating protocol is required to allow developers to reuse application components

and interact with the operating system units. This protocol is called Inter-Process Com-

munication (IPC) because it facilitates the interactions between different processes. In

case of Android, this protocol is implemented at the Android Middleware level (with a

special driver released on the Linux Kernel level). The security on this level is provided by

the IPC Reference Monitor. The reference monitor mediates all communications between

processes and controls how applications access the components of the system and other

apps. In Android, IPC Reference Monitor follows Mandatory Access Control (MAC)

access control type.

All Android apps by default are run in low-privileged Application Sandboxes. Thus,

an application has an access only to a limited set of system capabilities. The Android

operating system controls the access of apps to the system resources that may adversely

impact user experience [6]. This control is implemented in different forms, some of them

are considered in details in Sections 2.3, 2.4 and 2.5. There is also a subset of protected

system features (for instance, camera, telephony or GPS functionality), the access to

which should be provided to third-party apps. However, this access should be provided

in controlled manner. In case of Android, such control is realized using Permissions.

Basically, each sensitive API, which provides access to the protected system resources, is

assigned with a Permission – unique security label. Moreover, protected features may

also include components of other applications.

To make the use of protected features, the developer of an application must request the

corresponding permissions in the special AndroidManifest.xml manifest file. During the

installation of an application the Android OS parses this file and presents the user with

the list of the permissions declared in this file. The installation of an application occurs

according to “all or nothing” principle, meaning that the app is installed only if all per-

missions are accepted. Otherwise, the application will not be installed. The permissions

are granted only at the installation time and can not be modified later. As an example

of a permission, consider an application that needs to monitor incoming SMS messages.

In this case, the AndroidManifest.xml file must contain in the <uses-permission> tag

the following declaration: "android.permission.RECEIVE SMS"/>.

15

CHAPTER 2. ANDROID SECURITY

An attempt of an application to use a feature, which permission has not been declared

in the Android Manifest file, will typically result in a thrown security exception. The

details of permission enforcement mechanism we consider in the following sections.

More detailed security architecture of Android is shown in Figure 2.3. We will refer to

it here and there in this work to explain the peculiarities of this operating system.

ex1.apk

Linux Kernel

Binder IPC
user: app_1

home: data/data/com.ex.ex1

user: app_2

home: data/data/com.ex.ex2

user: app_3

home: data/data/com.ex.ex3

Android middleware

ICC Reference Monitor

Application1

 JNI

.so

Application2

DalvikVM Sandbox

Application3

 JNI

.so

A1C1

uses-

permission:

p2, p3
A1C2

A2C1:

p2

A3C1:

p3

uses-

permission:

p4

Permissions checking

Package Installer

ex2.apk

Permissions checking

Google Play

ex3.apk

ADB

DalvikVM Sandbox DalvikVM Sandbox

Figure 2.3: Android security architecture

2.3 Android Security on the Linux Kernel Level

One of the most widely known open-sources projects, Linux has proved itself as a secure,

trusted and stable piece of software being researched, attacked and patched by thou-

sands of people all over the world. Not surprisingly, Linux Kernel is the basis of the

Android operating system [6]. Android relies on Linux not only for process, memory and

filesystem management, it is also one of the most important components in the Android

security architecture. In Android Linux Kernel is responsible for provisioning Application

Sandboxing and enforcement of some permission.

16

2.3. ANDROID SECURITY ON THE LINUX KERNEL LEVEL

2.3.1 Application Sandboxing

Let consider the process of an Android application installation in details. Android apps

are distributed in the form of Android Package (.apk) files. A package consists of a Dalvik

executable, resources, native libraries and a manifest file, and is signed by a developer

signature. There are three main mediators that may install a package on a device in the

stock Android operating system:

• Google Play.

• Package Installer.

• adb install.

Google Play is a special application that provides the user with a capability to look for

an application uploaded to the market by third-party developers along with a possibility

to install it. Although it is also a third-party application, Google Play app (because of

being signed with the same signature as the operating system) has access to protected

components of Android, which other third-party applications lack for. In case if the user

installs applications from other sources she usually implicitly uses Package Installer app.

This system application provides an interface that is used to start package installation

process. The utility adb install, which is provided by Android, is mainly used by third-

party app developers. While the former two mediators require a user to agree with the

list of permissions during the installation process, the latter installs an app quietly. That

is why it is mainly used in developer tools aiming at installing an application on a device

for testing. This process is shown in the upper part of Figure 2.3.

The process of provisioning Application Sandbox at the Linux kernel level is the fol-

lowing. During the installation, each package is assigned with a unique user identifier

(UID) and a group identifier (GID) that are not changed during app life on a device.

Thus, in Android each application has a corresponding Linux user. User name follows

the format app x, and UID of that user is equal to Process.FIRST APPLICATION UID +

x, where Process.FIRST APPLICATION UID constant corresponds to 10000. For instance,

in Figure 2.3 ex1.apk package during the installation receives app 1 user name, and UID

equal to 10001 .

In Linux, all files in memory are subject for Linux Discretionary Access Control (DAC).

Access permissions are set by a creator or an owner of a file for three types of users: the

owner of the file, the users who are in the same group with the owner and all other users.

For each type of users, a tuple of read, write and execute (r-w-x) permissions are assigned.

Hence, so as each application has its own UID and GID, Linux kernel enforces the app ex-

ecution within its own isolated address space. Beside that, the app unique UIDs and GIDs

are used by Linux kernel to enforce fair separation of device resources (memory, CPU,

17

CHAPTER 2. ANDROID SECURITY

etc.) between different applications. Each application during the installation also receives

its own home directory, for instance, /data/data/package name, where package name is

the name of an Android package, for example, com.ex.ex1 In terms of Android, this

folder is Internal Storage, where an application keeps its private data. Linux permissions

assigned to this directory allows only the “owner” application to write to and read from

this directory. It should be mentioned that there are some exceptions. The apps, which

are signed with the same certificate, are able to share data between each other, may have

the same UID or can even run in the same process.

These architectural decisions set up effective and efficient Application Sandbox on the

Linux Kernel level. This type of sandbox is simple and based on the verified Linux

Discretionary Access Control model. Luckily, so as the sandbox is enforced on the Linux

Kernel level, native code and operating system applications are also subject to these

constraints described in this section [6].

2.3.2 Permission Enforcement on the Linux Kernel level

It is possible to restrict the access to some system capabilities by assigning the Linux

user and group owners to the components that implement this functionality. This type

of restrictions can be applied to system resources like files, drivers and sockets. Android

uses Filesystem Permissions and Android-specific kernel patches (known as Paranoid

Networking) [81] to restrict the access to low-level system features like network sockets,

camera device, external storage, possibility to read logs, etc.

Using filesystem permissions to files and device drivers, it is possible to limit processes

in accessing some functionality of a device. For instance, such technique is applied to

restrict access of applications to a device camera. The permissions to /dev/cam device

driver is set to 0660, with root owner and camera owner group. This means that only

processes run as root or which are included in camera group, are able to read from and

write to this device driver. Thus, only applications, which are included into camera group

can interact with the camera. The mappings between permission labels and corresponding

groups are defined in the file frameworks/base/data/etc/platform.xml, which excerpt

is presented in Listing 2.1. Thus, during the installation if an app has requested the

access to a camera feature and the user has approved it, this application is also assigned

a camera Linux group GID (see corresponding Lines 8 and 9 in Listing 2.1). Therefore,

this app receives a possibility to read information from /dev/cam device driver.

There are several points in Android where filesystem permissions to files, drivers and

unix-sockets are set in: init program, init.rc configuration file(s), ueventd.rc config-

uration file(s) and system ROM filesystem config file. They are considered in details in

Section 2.4.

In traditional Linux distributions, all processes are allowed to initiate network connec-

18

2.4. ANDROID SECURITY ON THE NATIVE USERSPACE LEVEL

1 . . .

2 <permi s s i ons>

3 . . .

4 <permiss ion name=” android . permis s ion .INTERNET” >

5 <group gid=” i n e t ” />

6 </ permis s ion>

7

8 <permiss ion name=” android . permis s ion .CAMERA” >

9 <group gid=”camera” />

10 </ permis s ion>

11

12 <permiss ion name=” android . permis s ion .READ LOGS” >

13 <group gid=” log ” />

14 </ permis s ion>

15 . . .

16 </ permi s s i ons>

Listing 2.1: The mappings between permission labels and Linux groups

tions. At the same time, for mobile operating systems the access to networking capabilities

has to be controlled. To implement this control in Android, special kernel patches have

been added that limit the access to network facilities only to the processes that belong to

specific Linux groups or have specific Linux capabilities. These Android-specific patches of

the Linux kernel have obtained the name Paranoid networking. For instance, for AF INET

socket address family, which is responsible for network communication, this check is per-

formed in kernel/net/ipv4/af inet.c file (see the code extraction in Listing 2.2). The

mappings between the Linux groups and permission labels for Paranoid networking are

also set in platform.xml file (for instance, see Line 4 in Listing 2.1).

Similar Paranoid Networking patches are also applied to restrict the access to IPv6

and Bluetooth [144].

The constants used in these checks are hardcoded in the kernel and specified in the

kernel/include/linux/android aid.h file (see Listing 2.3).

Thus, at the Linux Kernel level the Android permissions are enforced by checking if an

application is included into a special predefined group. Only the members of this group

have access to the protected functionality. During the installation of an app, if a user has

agreed with the requested permission, the application is included into the corresponding

Linux group and, hence, receives access to the protected functionality.

2.4 Android Security on the Native Userspace Level

The Native Userspace level plays an important role in the security provisioning of the

Android operating system. It is impossible to understand how the security architectural

decisions are enforced in the system without the comprehension what happens on this

layer. In this section the topics of the Android booting process and the filesystem pecu-

liarities are considered along with the summarization how the security is enforced on the

19

CHAPTER 2. ANDROID SECURITY

1 . . .

2 #i f d e f CONFIG ANDROID PARANOID NETWORK

3 #inc lude <l i nux / andro id a id . h>

4

5 s t a t i c i n l i n e i n t cur rent has network (void)

6 {
7 re turn in egroup p (AID INET) | | capable (CAP NET RAW) ;

8 }
9 #e l s e

10 s t a t i c i n l i n e i n t cur rent has network (void)

11 {
12 re turn 1 ;

13 }
14 #e nd i f

15 . . .

16

17 /∗
18 ∗ Create an i n e t socket .

19 ∗/
20

21 s t a t i c i n t i n e t c r e a t e (s t r u c t net ∗net , s t r u c t socket ∗ sock , i n t protoco l ,

22 i n t kern)

23 {
24 . . .

25 i f (! cur rent has network ())

26 re turn −EACCES;

27 . . .

28 }

Listing 2.2: Paranoid networking patch

Native Userspace level.

2.4.1 Android Booting Process

To understand what procedures provision security on the Native Userspace level, at first

the booting sequence of an Android device should be considered. It should be mentioned

that during the first steps this sequence may vary on different devices but after the Linux

kernel is loaded the process is usually the same. The flow of the booting process is shown

in Figure 2.4.

When a user powers on a smartphone the CPU of the device will appear in a non-

initialised state. In this case, a processor starts executing commands beginning from a

hardwired address. This address points to a piece of code in the write-protected memory

of the CPU, where Boot ROM is located (see Step 1 in Figure 2.4). The main aim of

the code resided on Boot ROM is to detect a media, where Boot Loader is located [134].

When the detection is done, Boot ROM loads Boot Loader into the internal memory

(which is only available after device power-on) and performs a jump to the loaded code

of Boot Loader. On its turn, Boot Loader sets up external RAM, filesystem and network

support. After that it loads Linux Kernel into the memory and passes the execution to it.

Linux Kernel initialises the environment to run C code, activates interrupt controllers,

sets up memory management units, defines scheduling, loads drivers and mounts root

20

2.4. ANDROID SECURITY ON THE NATIVE USERSPACE LEVEL

1 . . .

2 #i f n d e f LINUX ANDROID AID H

3 #d e f i n e LINUX ANDROID AID H

4

5 /∗ AIDs that the ke rne l t r e a t s d i f f e r e n t l y ∗/
6 #d e f i n e AID OBSOLETE 000 3001 /∗ was NET BT ADMIN ∗/
7 #d e f i n e AID OBSOLETE 001 3002 /∗ was NET BT ∗/
8 #d e f i n e AID INET 3003

9 #d e f i n e AID NET RAW 3004

10 #d e f i n e AID NET ADMIN 3005

11 #d e f i n e AID NET BW STATS 3006 /∗ read bandwidth s t a t i s t i c s ∗/
12 #d e f i n e AID NET BW ACCT 3007 /∗ change bandwidth s t a t i s t i c s account ing ∗/
13

14 #e nd i f

Listing 2.3: Android id constants hardcoded in Linux kernel

filesystem. When memory management units are initialized, the system is ready to use

virtual memory and run user-space processes [134]. Actually, starting from this step the

process does not differ from the one that occurs on desktop computers running Linux.

The first user-space process, which is an ancestor of all processes in Android, is init.

The executable of this program is located in the root directory of the Android filesystem.

Listing 2.4 contains the focal points of the sources of this executable. It can be seen

that the init binary is responsible for the creation of the basic filesystem entries (Lines

from 7 to 16). After that (Line 18), the program parses the init.rc configuration file

and executes the commands written there.

1 i n t main (i n t argc , char ∗∗ argv)

2 {
3 . . .

4 i f (! strcmp (basename (argv [0]) , ”ueventd”))

5 re turn ueventd main (argc , argv) ;

6 . . .

7 mkdir (”/dev” , 0755) ;

8 mkdir (”/ proc ” , 0755) ;

9 mkdir (”/ sys ” , 0755) ;

10

11 mount (” tmpfs” , ”/dev” , ” tmpfs” , MS NOSUID, ”mode=0755”) ;

12 mkdir (”/dev/ pts ” , 0755) ;

13 mkdir (”/dev/ socket ” , 0755) ;

14 mount (” devpts ” , ”/dev/ pts ” , ” devpts ” , 0 , NULL) ;

15 mount (” proc ” , ”/ proc ” , ” proc ” , 0 , NULL) ;

16 mount (” s y s f s ” , ”/ sys ” , ” s y s f s ” , 0 , NULL) ;

17 . . .

18 i n i t p a r s e c o n f i g f i l e (”/ i n i t . rc ”) ;

19 . . .

20 }

Listing 2.4: The sources of init program

The init.rc configuration file is written using a language called Android Init Language

and located in the root directory. This configuration file can be imagined as a list of

actions (sequence of commands), which execution is triggered by the predefined events.

For instance, in Listing 2.5, fs (Line 1) is a trigger, while Lines 4 – 7 represent the Actions.

21

CHAPTER 2. ANDROID SECURITY

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Init

Boot ROM

Boot Loader

Linux Kernel

Daemons Zygote

Runtime

Dalvik VM

Service Manager

System ServerService Manager

System Services SurfaceFlinger

Figure 2.4: Android boot sequence

The commands written in the init configuration file defines system global variables, sets

up basic kernel parameters for memory management, configures filesystem, etc. What is

more important from the security perspective, it is also responsible for the basic filesystem

structure creation and for the assignment of the owners and the filesystem permissions to

the created nodes.

Additionally, the init program is responsible for starting several essential daemons

and processes in Android (see Step 5 in Figure 2.4), the parameters of which are also

defined in the init.rc file. An executed process in Linux by default is run with the same

permissions (under the same UID) as an ancestor. In Android, init is started with the

root privileges (UID == 0). This means that all descendant processes should run with the

same UID. Luckily, the privileged processes may change their UIDs to the less privileged

ones. Thus, all descendants of the init process may use this functionality specifying the

UID and the GID of a forked process (the owner and group are also defined in the init.rc

file).

22

2.4. ANDROID SECURITY ON THE NATIVE USERSPACE LEVEL

1 on f s

2 # mount mtd p a r t i t i o n s

3 # Mount / system rw f i r s t to g ive the f i l e s y s t e m a chance to save a checkpoint

4 mount y a f f s 2 mtd@system /system

5 mount y a f f s 2 mtd@system /system ro remount

6 mount y a f f s 2 mtd@userdata /data nosuid nodev

7 mount y a f f s 2 mtd@cache / cache nosuid nodev

Listing 2.5: The list of actions performed on fs trigger in emulator

One of the first daemons, which is forked from the init process, is the ueventd dae-

mon. This service runs its own main function (see Line 5 in Listing 2.4) that reads the

ueventd.rc and ueventd.[device name].rc configuration files and replays the specified

there kernel uevent hotplug events. These events set up the owners and permissions for

different devices (see Listing 2.6). For instance, Line 5 shows how the filesystem permis-

sions to /dev/cam device are set, which example was considered in Section 2.3. After

that, the daemon waits listening for all future hotplug events.

1 . . .

2 /dev/ashmem 0666 root root

3 /dev/ binder 0666 root root

4 . . .

5 /dev/cam 0660 root camera

6 . . .

Listing 2.6: ueventd.rc file

One of the core services started by the init program is servicemanager (see Step 5 in

Figure 2.4). This service acts as an index of all services running in Android. It must be

available on early phase because all system services, which are started afterward, should

have a possibility to register themselves and, thus, become visible to the rest of the

operating system [144].

Another core process launched by the init process is Zygote. Zygote is a special process

that has been warmed-up. This means that the process has been initialised and linked

against the core libraries. Zygote is an ancestor for all processes. When a new applica-

tion is started, Zygote forks itself. After that, the parameters corresponding to a new

application, for instance, UID, GIDs, nice-name, etc., are set for the forked child process.

The acceleration of a new process creation is achieved because there is no need to copy

core libraries into the new process. The memory of a new process has “copy-on-write”

protection, meaning that the data will be copied from the zygote process to a new one

only if the latter tries to write into the protected memory. So as core libraries cannot

be changed, they are remained only in one place reducing memory consumption and the

application startup time.

The first process, which is run using Zygote is System Server (Step 6 in Figure 2.4).

This process, at first, runs native services, such as SurfaceFlinger and SensorService.

23

CHAPTER 2. ANDROID SECURITY

After the services initialized, a callback is invoked, which starts the remaining services.

All these services are then registered with servicemanager.

2.4.2 Android Filesystem

Although Android is based on Linux Kernel, its filesystem hierarchy does not comply with

Filesystem Hierarchy Standard [41] that defines filesystem layout of Unix-like systems (see

Listing 2.7). Some directories in Android and in Linux are the same, for instance, /dev,

/proc, /sys, /etc, /mnt, etc. The purposes of these folders are the same as in Linux. At

the same time, there are directories, such as /system, /data and /cache, which cannot

be found in the Linux systems. These folders are the core parts of Android. During

the build of the Android operating system, three image files are created: system.img,

userdata.img and cache.img. These images provide the core functionality of Android

and are the ones that are flashed on a device. During the boot of the system the init

program mounts these images to the predefined mounting points, like /system, /data

and /cache correspondingly (see Listing 2.5).

1 drwxr−xr−x root root 2013−04−10 08 : 13 acct

2 drwxrwx−−− system cache 2013−04−10 08 : 13 cache

3 dr−x−−−−−− root root 2013−04−10 08 : 13 c o n f i g

4 lrwxrwxrwx root root 2013−04−10 08 : 13 d −> / sys / ke rne l /debug

5 drwxrwx−−x system system 2013−04−10 08 : 14 data

6 −rw−r−−r−− root root 116 1970−01−01 00 : 00 d e f a u l t . prop

7 drwxr−xr−x root root 2013−04−10 08 : 13 dev

8 lrwxrwxrwx root root 2013−04−10 08 : 13 e tc −> / system/ etc

9 −rwxr−x−−− root root 244536 1970−01−01 00 : 00 i n i t

10 −rwxr−x−−− root root 2487 1970−01−01 00 : 00 i n i t . g o l d f i s h . rc

11 −rwxr−x−−− root root 18247 1970−01−01 00 : 00 i n i t . rc

12 −rwxr−x−−− root root 1795 1970−01−01 00 : 00 i n i t . t r a c e . rc

13 −rwxr−x−−− root root 3915 1970−01−01 00 : 00 i n i t . usb . rc

14 drwxrwxr−x root system 2013−04−10 08 : 13 mnt

15 dr−xr−xr−x root root 2013−04−10 08 : 13 proc

16 drwx−−−−−− root root 2012−11−15 05 : 31 root

17 drwxr−x−−− root root 1970−01−01 00 : 00 sb in

18 lrwxrwxrwx root root 2013−04−10 08 : 13 sdcard −> /mnt/ sdcard

19 d−−−r−x−−− root sdcard r 2013−04−10 08 : 13 s to rage

20 drwxr−xr−x root root 2013−04−10 08 : 13 sys

21 drwxr−xr−x root root 2012−12−31 03 : 20 system

22 −rw−r−−r−− root root 272 1970−01−01 00 : 00 ueventd . g o l d f i s h . rc

23 −rw−r−−r−− root root 4024 1970−01−01 00 : 00 ueventd . rc

24 lrwxrwxrwx root root 2013−04−10 08 : 13 vendor −> / system/vendor

Listing 2.7: Android filesystem

The /system partition incorporates the entire Android operating system except the

Linux kernel, which itself is located on the /boot partition. This folder contains the

subdirectories /system/bin and /system/lib that contain core native executables and

shared libraries correspondingly. Additionally, this partition encompass all system ap-

plications that are prebuilt with the system image. The image is mounted in read only

mode (see Line 5 in Listing 2.5). Hence, the content of this partition cannot be changed

24

2.4. ANDROID SECURITY ON THE NATIVE USERSPACE LEVEL

at runtime.

So as /system partition is mounted as read-only, it cannot be used for storing data. For

this purposes the separate partition /data is allocated that responsible for storing user

data or information changing over the time. For instance, /data/app directory contains

all apk files of installed applications, while /data/data folder encloses “home” directories

of the apps.

The /cache partition is responsible for storing frequently accessed data and application

components. Additionally, the operating system over-the-air updates are also stored on

this partition before being run.

So as /system, /data and /cache are formed during the compilation of Android, the

default rights and owners to the files and folders contained on these images have to be

defined at compile time. This means that the user and groups UIDs and GIDs should be

available during the compilation of this operating system. The android filesystem config.h

file (see Listing 2.8) contains the list of predefined users and groups. It should be men-

tioned that the values in some lines (for instance, see Line 10) correspond to the ones

already defined on the Linux Kernel level, described in Section 2.3.

1 #d e f i n e AID ROOT 0 /∗ t r a d i t i o n a l unix root user ∗/
2 #d e f i n e AID SYSTEM 1000 /∗ system s e r v e r ∗/
3 #d e f i n e AID RADIO 1001 /∗ te lephony subsystem , RIL ∗/
4 #d e f i n e AID BLUETOOTH 1002 /∗ bluetooth subsystem ∗/
5 #d e f i n e AID GRAPHICS 1003 /∗ graph i c s dev i c e s ∗/
6 #d e f i n e AID INPUT 1004 /∗ input dev i c e s ∗/
7 #d e f i n e AID AUDIO 1005 /∗ audio dev i c e s ∗/
8 #d e f i n e AID CAMERA 1006 /∗ camera dev i c e s ∗/
9 . . .

10 #d e f i n e AID INET 3003 /∗ can c r ea t e AF INET and AF INET6 socke t s ∗/
11 . . .

12 #d e f i n e AID APP 10000 /∗ f i r s t app user ∗/
13 . . .

14 s t a t i c const s t r u c t a n d r o i d i d i n f o andro id id s [] = {
15 { ” root ” , AID ROOT, } ,

16 { ” system” , AID SYSTEM, } ,

17 { ” rad io ” , AID RADIO, } ,

18 { ” b luetooth ” , AID BLUETOOTH, } ,

19 { ” graph i c s ” , AID GRAPHICS, } ,

20 { ” input ” , AID INPUT , } ,

21 { ” audio ” , AID AUDIO, } ,

22 { ”camera” , AID CAMERA, } ,

23 . . .

24 { ” i n e t ” , AID INET , } ,

25 . . .

26 } ;

Listing 2.8: Android hard-coded UIDs and GIDs and their mapping to user names

Additionally, in this file the default rights, owners and owner groups of the files and

folders are defined (see Listing 2.9). These rules are parsed and applied by fs config()

function, which is defined in the end of this file. This function is called during the assembly

of the images.

25

CHAPTER 2. ANDROID SECURITY

1 /∗ Rules f o r d i r e c t o r i e s . ∗/
2 s t a t i c s t r u c t f s path c o n f i g android d i r s [] = {
3 { 00770 , AID SYSTEM, AID CACHE, ” cache ” } ,

4 { 00771 , AID SYSTEM, AID SYSTEM, ”data/app” } ,

5 . . .

6 { 00777 , AID ROOT, AID ROOT, ” sdcard ” } ,

7 { 00755 , AID ROOT, AID ROOT, 0 } ,

8 } ;

9

10 /∗ Rules f o r f i l e s . ∗/
11 s t a t i c s t r u c t f s path c o n f i g android f i l e s [] = {
12 . . .

13 { 00644 , AID SYSTEM, AID SYSTEM, ”data/app/∗” } ,

14 { 00644 , AID MEDIA RW, AID MEDIA RW, ”data/media/∗” } ,

15 { 00644 , AID SYSTEM, AID SYSTEM, ”data/app−pr i va t e /∗” } ,

16 { 00644 , AID APP, AID APP, ”data/data /∗” } ,

17 . . .

18 { 02755 , AID ROOT, AID NET RAW, ”system/ bin / ping ” } ,

19 { 02750 , AID ROOT, AID INET, ” system/ bin / ne t c f g ” } ,

20 . . .

21 { 06755 , AID ROOT, AID ROOT, ” system/ xbin /su” } ,

22 . . .

23 { 06750 , AID ROOT, AID SHELL, ” system/ bin /run−as ” } ,

24 { 00755 , AID ROOT, AID SHELL, ” system/ bin /∗” } ,

25 . . .

26 { 00644 , AID ROOT, AID ROOT, 0 } ,

27 } ;

Listing 2.9: Default permissions and owners

2.4.3 Native Executables Protection

It can be mentioned in Linsting 2.9 that some binaries are assigned with setuid and setgid

access rights flags. For instance, the su program has them set. This well-known utility

allows a user to run a program with the specified UID and GID. In Linux this functionality

is usually used to run programs with superuser privileges. According to Listing 2.9, the

binary system/xbin/su is assigned with the access rights equal to “06755” (see Line 21).

The first non-zero number “6” means that this binary has setuid and setgid (4 + 2) access

rights flags set. Usually, in Linux an executable is run with the same privileges as the

process that has started it. These flags allows a user to run a program with the privileges

of executable’s owner or group [57]. Thus, in our case the binary system/xbin/su will

be run as root user. These root privileges allow the program to change its UID and GID

to the ones specified by a user (see Line 15 in Listing 2.10). After that, su may start the

provided program (for instance, see Line 22) with the specified UID and GID. Therefore,

the program will be started with the required UID and GID.

In the case of privileged programs it is required to restrict the circle of applications

that have access to such utilities. In our case, without such restrictions any app may run

su program and obtain root level privileges. In Android, such restrictions on the Native

Userspace level are implemented comparing the UID of the calling program with the list

of the UIDs allowed to run it. Thus, in Line 9 the su executable obtains the current

26

2.5. ANDROID SECURITY ON THE APPLICATION FRAMEWORK LEVEL

UID of the process, which is equal to the UID of the process calling it, and in Line 10 it

compares this UID with the predefined list of allowed UIDs. Therefore, only if the UID

of the calling process is equal to AID ROOT or AID SHELL the su utility will be started. To

perform such check, su imports the UID constants (see Line 1) defined in Android.

1 #inc lude <pr i va t e / a n d r o i d f i l e s y s t e m c o n f i g . h>

2 . . .

3 i n t main (i n t argc , char ∗∗ argv)

4 {
5 s t r u c t passwd ∗pw;

6 i n t uid , gid , myuid ;

7

8 /∗ Unt i l we have something better , only root and the s h e l l can use su . ∗/
9 myuid = getu id () ;

10 i f (myuid != AID ROOT && myuid != AID SHELL) {
11 f p r i n t f (s tde r r , ” su : uid %d not a l lowed to su\n” , myuid) ;

12 re turn 1 ;

13 }
14 . . .

15 i f (s e t g i d (g id) | | s e tu id (uid)) {
16 f p r i n t f (s tde r r , ” su : permis s ion denied\n”) ;

17 re turn 1 ;

18 }
19

20 /∗ User s p e c i f i e d command f o r exec . ∗/
21 i f (argc == 3) {
22 i f (exec lp (argv [2] , argv [2] , NULL) < 0) {
23 f p r i n t f (s tde r r , ” su : exec f a i l e d f o r %s Error :%s\n” , argv [2] ,

24 s t r e r r o r (errno)) ;

25 re turn −errno ;

26 }
27 . . .

28 }

Listing 2.10: Source code of su program

Additionally, in newer versions (starting from 4.3) the Android core developers started

to use Capabilities Linux kernel system [15]. This allows them additionally restrict the

privileges of the programs that are required to run with root privileges. For instance, in

the considered case of the su program it is not required to have all privileges of the root

user. For this program it is enough only to have a possibility to change current UID and

GID. Therefore, this utility requires only CAP SETUID and CAP SETGID root capabilities

to operate correctly.

2.5 Android Security on the Application Framework Level

As we described in Section 2.2 the security on the Application Framework level is en-

forced by IPC Reference Monitor. In Section 2.5.1 we start our consideration of the

security mechanisms on this level from the description of the inter-process communica-

tion system used in Android. After that we introduce permissions in Section 2.5.2, while

in Section 2.5.3 we describe the permission enforcement system implemented on this level.

27

CHAPTER 2. ANDROID SECURITY

2.5.1 Android Binder Framework

As we described in Section 2.3.1, all Android applications are run in Application Sand-

boxes. Roughly saying, the sandboxing of the apps is provisioned by running all apps in

different processes with different Linux identities. Additionally, system services are also

run in separate processes with more privileged identities that allow them to get access to

different parts of the system protected using the Linux Kernel DAC capabilities (see Sec-

tions 2.3 and 2.4). Thus, an Inter-Process Communication (IPC) framework is required

to organize data and signals exchange between different processes. In Android, a spe-

cial framework called Binder is used for inter-process communication [80]. The standard

Posix System V IPC framework is not supported 1 by the Android implementation of

the Bionic libc library. Moreover, additionally to the Binder framework for some special

cases Unix domain sockets are used (e.g., for communication with the Zygote daemon)

but the consideration of these mechanisms is out of the scope of this work.

The Binder framework was specifically redeveloped to be used in Android. It provides

the capabilities required to organize all types of communication between processes in this

operating system. Basically, even the mechanisms, such as Intents and ContentProviders,

well-known to application developers, are built on top of the Binder framework. This

framework provides the variety of features, such as the possibility to invoke methods on

remote objects as if they were local, synchronous and asynchronous method invocation,

link to death 2, ability to send file descriptors across processes, etc. [80,127].

The communication between the processes is organized according to synchronous client-

server model. The client initiates a connection and waits for a reply from the server side.

Thus, the communication between the client and the server may be imagined as they

are executed in the same process thread. This provides a developer with the possibility

to invoke methods on remote objects as if they were local. The communication model

through Binder is presented in Figure 2.5. In this figure, the application in Process A,

which acts as a Client, wants to use the behavior exposed by a Service, which runs in

Process B [80].

All communications between clients and services using the Binder framework happens

through a Linux kernel driver /dev/binder. The permissions to this device driver is set

to world readable and writable (see Line 3 in Listing 2.6 located in Section 2.4.1). Hence,

any application may write to and read from this device. To conceal the peculiarities of

the Binder communication protocol, the libbinder library is used in Android. It provides

the facilities to make the process of interaction with the kernel driver transparent for an

app developer. In particular, all communications between a Client and a Server happen

through proxies on the client side and stubs on the server side. The proxies and the

stubs are responsible for marshaling and unmarshaling the data and the commands sent

1https://android.googlesource.com/platform/ndk/+/android-4.2.2_r1.2/docs/system/libc/SYSV-IPC.html
2Link to Death is an automatic notification when a Binder of a certain process is terminated

28

https://android.googlesource.com/platform/ndk/+/android-4.2.2_r1.2/docs/system/libc/SYSV-IPC.html

2.5. ANDROID SECURITY ON THE APPLICATION FRAMEWORK LEVEL

Process BKernelProcess A

Client Proxy Binder
Driver Stub Service

Figure 2.5: Android Binder communication model [80]

over the Binder driver. To make use of proxies and stubs a developer just defines an

AIDL interface that is transformed into a proxy and a stub during the compilation of the

application. On the server side, a separate Binder thread is invoked to process a client

request.

Technically, each Service (sometimes called as Binder Service) exposed using the

Binder mechanism is assigned with a token. The kernel driver ensures that this 32 bit

value is unique across all processes in the system. Thus, this token is used as a handle to

a Binder Service. Having this handle it is possible to interact with the Service. However,

to start using the Service the Client at first has to discover this value. The discovery

of Service’s handle occurs using Binder’s context manager (servicemanager is Android’s

implementation of Binder’s context manager. Here we use these notions interchangeably).

Context manager is a special Binder Service with the predefined handle value equal to 0

(the reference to which is obtained in Line 8 in Listing 2.11). So as it has a fixed handle

value, any party can find it and call its methods. Basically, context manager acts as a

name service providing the handle of a Service using the name of this Service. To achieve

this goal, each Service must be registered with context manager (for instance, using the

method addService of the ServiceManager class in Line 26). Thus, a Client has to know

only the name of a Service to communicate with it. Resolving this name using context

manager (see method getService Line 12) the Client receives the token that is later

used for the interactions with the Service. The Binder driver allows only a single context

29

CHAPTER 2. ANDROID SECURITY

manager to be registered. Therefore, servicemanager is one of the first services started

by Android (see Section 2.4.1). The component servicemanager ensures that only the

privileged system identities are allowed to register services.

1 pub l i c f i n a l c l a s s ServiceManager {
2 . . .

3 pr i va t e s t a t i c IServiceManager getIServ iceManager () {
4 i f (sServiceManager != n u l l) {
5 re turn sServiceManager ;

6 }
7 // Find the s e r v i c e manager

8 sServiceManager = ServiceManagerNative . a s I n t e r f a c e (B inde r In t e rna l . getContextObject ()) ;

9 re turn sServiceManager ;

10 }
11

12 pub l i c s t a t i c IBinder g e t S e r v i c e (S t r ing name) {
13 t ry {
14 IBinder s e r v i c e = sCache . get (name) ;

15 i f (s e r v i c e != n u l l) {
16 re turn s e r v i c e ;

17 } e l s e {
18 re turn getIServ iceManager () . g e t S e r v i c e (name) ;

19 }
20 } catch (RemoteException e) {
21 Log . e (TAG, ” e r r o r in g e t S e r v i c e ” , e) ;

22 }
23 re turn n u l l ;

24 }
25

26 pub l i c s t a t i c void addServ ice (S t r ing name , IBinder s e rv i c e , boolean a l l o w I s o l a t e d) {
27 t ry {
28 getIServ iceManager () . addServ ice (name , s e rv i c e , a l l o w I s o l a t e d) ;

29 } catch (RemoteException e) {
30 Log . e (TAG, ” e r r o r in addServ ice ” , e) ;

31 }
32 }
33 . . .

34 }

Listing 2.11: The sources of ServiceManager

The Binder framework does not impose any security by itself. At the same time, it

provides the facilities to procure the security in Android. The Binder driver adds the

UID and the PID of the sender process to each transaction. So as each application in

the system has its own UID, this value may be used to identify the calling party. The

receiver of the call may check the obtained values and decide if the transaction should

be completed. The receiver may get the UID and the PID of the sender using the calls

android.os.Binder.getCallingUid() and android.os.Binder.getCallingPid() [80].

Additionally, a Binder handle may also act as a security token due to its uniqueness across

all the processes and the obscurity of its value [108].

30

2.5. ANDROID SECURITY ON THE APPLICATION FRAMEWORK LEVEL

2.5.2 Android Permissions

As we consider in Section 2.3.1, in Android each application by default obtains its own

UID and GID system identities. Additionally, there are also a number of the identities

hardcoded in the operating system (see Listing 2.8). These identities are used to sepa-

rate the components of the Android operating system using the DAC enforced on the

Linux Kernel level, thus, increasing the overall security of the operating system. Among

these identities AID SYSTEM stands out. This UID is used to run the System Server

(system server), the component that unites the services provided by the Android OS.

The System Server has a privileged access to the operating system resources, and each

service run within the System Server provides the controlled access to a particular func-

tionality to other OS components and applications. This controlled access is backed by

the permission system.

As we consider in Section 2.5.1, the Binder framework provides the ability to get the

UID and the PID of the sender on the receiver side. In general case, this functionality

may be exploited by a service to control consumers that want to connect to the service.

This can be achieved by comparing the UID and/or PID of a consumer with the list of

UIDs allowed by the service. However, in Android this functionality is implemented in

a slightly different manner. Each critical functionality of a service (or simply saying a

method of a service) is guarded with a special label called permission. Roughly saying,

before running such method a check if the calling process is assigned with the permis-

sion, is performed. If the calling process has the required permission then the service

invocation will be allowed. Otherwise, a security check exception will be thrown (usually,

SecurityException). For instance, if a developer wants to provide her app with a pos-

sibility to send SMS she has to add into app’s AndroidManifest.xml file the following

line <uses-permission android:name="android.permission.SEND SMS" />. Android

also provides a set of special calls that allow to check at runtime if a service consumer

has been assigned with a permission.

The permission model described so far provides an effective way to enforce security. At

the same time, this model is ineffective because it considers all the permissions as equal. At

the same time, in the case of mobile operating systems the provided capabilities may not

be always equal in the security sense. For instance, the capability to install applications

is more critical then the ability to send SMSes, which in turn is more dangerous then the

setting an alarm or vibrating.

This problem is addressed in Android by introducing the security levels of permis-

sions. There are four possible levels of permissions: normal, dangerous, signature and

signatureOrSystem. The level of permissions is either hardcoded into the Android op-

erating system (for system permissions) or assigned by a developer of a third-party app

in the declaration of a custom permission. This level influences on a decision whether to

31

CHAPTER 2. ANDROID SECURITY

grant the permission to a requesting application. To be granted, the normal permissions

have to be just requested in application’s AndroidManifest.xml file. The dangerous

permissions, besides to be requested in the manifest file, have to be also approved by a

user. In this case, during the installation of an app the user is displayed with the set of

permissions requested by the package. If the user approves them, then the application

will be installed. Otherwise, the installation will be canceled. The signature permission

is granted by the system if the app requested the permission is signed with the same

signatures as the application that has declared it (the usage of app signatures in Android

is considered in Section 2.6.3). The signatureOrSystem permission is granted either if

the apps requesting and the declaring the permission are signed with the same certificates

or the requesting application is located on the system image. Thus, for our example

the vibrating capability will be protected with the permission of the normal level, send

SMSes functionality will be guarded with the dangerous permission level and package

installation ability will be secured with the signatureOrSystem permission level.

Definition of System Permissions

System permissions, which are used to protect Android operating system functionality, are

defined in framework’s AndroidManifest.xml file located in frameworks/base/core/res

folder of the Android sources. An excerpt of this file with several permission definition

examples is shown in Listing 2.12. In these examples the permission declarations are

shown used to protect sending SMSes, vibrator and package installation functionality.

By default the developers of third-party applications do not have access to the func-

tionality protected with system permissions of levels signature and signatureOrSystem.

This behaviour is ensured in the following way. The Application Framework package is

signed with the platform certificate. Thus, the applications requiring the functionality

protected with the permissions of these levels must be signed with the same platform

certificate. However, the access to the private key of this certificate is available only to

the builders of the operating system, usually hardware producers (who make their own

customization of Android) or telecom operators (who distribute the phones with their

modified images of operating systems).

Permission Management

The system service PackageManagerService is responsible for the application manage-

ment in Android. This service assists the installation, uninstallation and update of ap-

plications in the operating system. Another important role of this service is permission

management. Basically, it can be considered as a policy administration point. It stores

the information that allows to check if an Android package is assigned with a particular

permission. Additionally, during the installation and upgrade of applications it performs

32

2.5. ANDROID SECURITY ON THE APPLICATION FRAMEWORK LEVEL

1 <mani fes t xmlns :android=” ht tp : // schemas . android . com/apk/ r e s / android ”

2 package=” android ” coreApp=” true ” andro id : sharedUser Id=” android . uid . system”

3 andro id : sharedUserLabe l=” @str ing / andro id sy s t em labe l ”>

4 . . .

5 < !−− Allows an a p p l i c a t i o n to send SMS messages . −−>
6 <permiss ion android:name=” android . permis s ion .SEND SMS”

7 android :permiss ionGroup=” android . permiss ion−group .MESSAGES”

8 and ro i d : p r o t e c t i onLeve l=” dangerous ”

9 andro id :pe rmi s s i onF lag s=”costsMoney”

10 a n d r o i d : l a b e l=” @str ing /permlab sendSms”

11 a n d r o i d : d e s c r i p t i o n=” @str ing /permdesc sendSms” />

12 . . .

13 < !−− Allows ac c e s s to the v ib ra t o r −−>
14 <permiss ion android:name=” android . permis s ion .VIBRATE”

15 andro id :permiss ionGroup=” android . permiss ion−group .AFFECTS BATTERY”

16 and ro i d : p r o t e c t i onLeve l=”normal”

17 a n d r o i d : l a b e l=” @str ing / permlab v ibrate ”

18 a n d r o i d : d e s c r i p t i o n=” @str ing / permdesc v ibrate ” />

19 . . .

20 < !−− Allows an a p p l i c a t i o n to i n s t a l l packages . −−>
21 <permiss ion android:name=” android . permis s ion . INSTALL PACKAGES”

22 a n d r o i d : l a b e l=” @str ing / pe rmlab in s ta l lPackage s ”

23 a n d r o i d : d e s c r i p t i o n=” @str ing / pe rmdesc in s ta l lPackage s ”

24 and ro i d : p r o t e c t i onLeve l=” s i gna tu r e | system” />

25 . . .

26 </ mani fe s t>

Listing 2.12: The definitions of system permissions

a bunch of checks to ensure that the integrity of permission model is not violated dur-

ing these processes. Moreover, it also acts as a policy decision point. The methods of

this service (as we will show later) are the last elements in the chain of the permission

checks. We will not consider the operation of PackageManagerService here. However,

the interested reader may refer to [115,144] to get some more details how the installation

of applications is performed.

PackageManagerService stores all information related to permissions of third-party

applications in the /data/system/packages.xml [33]. This file is used as a persistent

storage between the restarts of the system. However, at runtime all information about

permissions is preserved in RAM allowing to increase the responsiveness of the system.

This information is collected during the boot using the data stored in the packages.xml

file for third-party applications and through parsing system apps.

2.5.3 Permission Enforcement on the Application Framework level

To understand how Android enforces permissions on the Application Framework level, for

instance, let consider the Vibrator Service. In Listing 2.13 in Line 6 an example how the

Vibrator Service protects its method vibrate is shown. In this line the check is performed

if a calling component is assigned with the label android.permission.VIBRATE defined by

the constant android.Manifest.permission.VIBRATE. Android provides several meth-

ods to check if a sender (or service consumer) has been assigned with a permission. In

33

CHAPTER 2. ANDROID SECURITY

our case, these facilities are represented by the method checkCallingOrSelfPermission.

Additionally to this method, there are also a number of other methods that can be used

to check the permissions of the service caller.

1 pub l i c c l a s s V ib ra to rSe rv i c e extends IV ib ra t o rSe rv i c e . Stub

2 implements InputManager . InputDev i ceL i s t ener {
3 . . .

4 pub l i c void v ib ra t e (long mi l l i s e c onds , IBinder token) {
5 i f (mContext . checkCa l l ingOrSe l fPermi s s i on (android . Mani fest . permis s ion .VIBRATE)

6 != PackageManager .PERMISSION GRANTED) {
7 throw new Secur i tyExcept ion (” Requires VIBRATE permiss ion ”) ;

8 }
9 . . .

10 }
11 . . .

12 }

Listing 2.13: The check of a permission

The implementation of the method checkCallingOrSelfPermission is shown in List-

ing 2.14. In Line 24 the method checkPermission is called. It takes the uid and the pid

as parameters that are provided by the Binder framework.

1 c l a s s ContextImpl extends Context {
2 . . .

3 @Override

4 pub l i c i n t checkPermiss ion (St r ing permiss ion , i n t pid , i n t uid) {
5 i f (permis s ion == n u l l) {
6 throw new I l l ega lArgumentExcept ion (” permis s ion i s n u l l ”) ;

7 }
8

9 t ry {
10 re turn ActivityManagerNative . ge tDe fau l t () . checkPermiss ion (

11 permiss ion , pid , uid) ;

12 } catch (RemoteException e) {
13 re turn PackageManager .PERMISSION DENIED;

14 }
15 }
16

17 @Override

18 pub l i c i n t checkCa l l ingOrSe l fPermi s s i on (St r ing permis s ion) {
19 i f (permis s ion == n u l l) {
20 throw new I l l ega lArgumentExcept ion (” permis s ion i s n u l l ”) ;

21 }
22

23 re turn checkPermiss ion (permiss ion , Binder . ge tCa l l ingP id () ,

24 Binder . ge tCa l l ingUid ()) ;

25 }
26 . . .

27 }

Listing 2.14: The excerpt of ContextImpl class

In Line 11, the check is redirected to the ActivityManagerService class that in turn

performs the actual check in the method checkComponentPermission of the ActivityManager

component. The code of this method is presented in Listing 2.15. In Line 4 it checks if

the caller UID belongs to the privileged ones. The components with the root and system

34

2.6. ANDROID SECURITY ON THE APPLICATION LEVEL

UIDs are granted by the system with all permissions.

1 pub l i c s t a t i c i n t checkComponentPermission (St r ing permiss ion , i n t uid ,

2 i n t owningUid , boolean exported) {
3 // Root , system s e r v e r get to do everyth ing .

4 i f (uid == 0 | | uid == Process .SYSTEM UID) {
5 re turn PackageManager .PERMISSION GRANTED;

6 }
7 // I s o l a t e d p r o c e s s e s don ’ t get any permi s s i ons .

8 i f (UserId . i s I s o l a t e d (uid)) {
9 re turn PackageManager .PERMISSION DENIED;

10 }
11 // I f the re i s a uid that owns whatever i s being accessed , i t has

12 // blanket a c c e s s to i t r e g a r d l e s s o f the pe rmi s s i ons i t r e q u i r e s .

13 i f (owningUid >= 0 && UserId . isSameApp (uid , owningUid)) {
14 re turn PackageManager .PERMISSION GRANTED;

15 }
16 // I f the t a r g e t i s not exported , then nobody e l s e can get to i t .

17 i f (! exported) {
18 Slog .w(TAG, ” Permiss ion denied : checkComponentPermission () owningUid=” + owningUid) ;

19 re turn PackageManager .PERMISSION DENIED;

20 }
21 i f (permis s ion == n u l l) {
22 re turn PackageManager .PERMISSION GRANTED;

23 }
24 t ry {
25 re turn AppGlobals . getPackageManager ()

26 . checkUidPermiss ion (permiss ion , uid) ;

27 } catch (RemoteException e) {
28 // Should never happen , but i f i t does . . . deny !

29 Slog . e (TAG, ”PackageManager i s dead ? ! ? ” , e) ;

30 }
31 re turn PackageManager .PERMISSION DENIED;

32 }

Listing 2.15: The sources of the method checkComponentPermission of the ActivityManager

In Line 26 in Listing 2.15 the permission check is redirected to Package Manager that

forwards it to PackageManagerService. As we explained before, this service knows what

permissions are assigned to Android packages. The PackageManagerService method,

which performs the permission check, is presented in Listing 2.16. In Line 7 the exact

check is performed if a permission is granted to the Android app defined by its UID.

2.6 Android Security on the Application Level

Although in this section we describe the security on the Application level, the actual

security enforcement usually happens on lower layers described so far. However, it is

easier to explain some security features of Android after introducing the Application level.

2.6.1 Application Components

Android apps are distributed in the form of Android Package (.apk) files. A package

consists of Dalvik executable files, resources files, a manifest file and native libraries, and

is signed by the developer of the applications using self-signed certificate.

35

CHAPTER 2. ANDROID SECURITY

1 pub l i c i n t checkUidPermiss ion (St r ing permName , i n t uid) {
2 f i n a l boolean en fo r cedDe fau l t = i sPermi s s i onEnfo rcedDe fau l t (permName) ;

3 synchronized (mPackages) {
4 Object obj = mSettings . getUserIdLPr (UserHandle . getAppId (uid)) ;

5 i f (obj != n u l l) {
6 GrantedPermiss ions gp = (GrantedPermiss ions) obj ;

7 i f (gp . grantedPermiss ions . conta in s (permName)) {
8 re turn PackageManager .PERMISSION GRANTED;

9 }
10 } e l s e {
11 HashSet<Str ing> perms = mSystemPermissions . get (uid) ;

12 i f (perms != n u l l && perms . conta in s (permName)) {
13 re turn PackageManager .PERMISSION GRANTED;

14 }
15 }
16 i f (! i sPermiss ionEnforcedLocked (permName , en fo r c edDe fau l t)) {
17 re turn PackageManager .PERMISSION GRANTED;

18 }
19 }
20 re turn PackageManager .PERMISSION DENIED;

21 }

Listing 2.16: The sources of method checkUidPermission of PackageManagerService

Each Android application consists of several components of four component types:

Activities, Services, Broadcast Receivers and Content Providers. The separation of an

application into the components supports the reuse of application parts between the apps.

• Activity. An Activity is an element of user interface. Generally speaking, the

activity often represents a screen.

• Service. A Service is a background worker in Android. The service can run indefinite

time. The most famous example of a service is media player that plays music in the

background even if the user leaves the activity that has started this service.

• Broadcast receiver. A Broadcast Receiver is a component of an application that

receives broadcast messages and starts a workflow according to the obtained message.

• Content provider. A Content Provider is a component that provides an application

with abilities to store and retrieve data. It also permits to share a set of data with

another application.

So as Android applications consist of different components, there is no central entry

point unlike Java programs with the main method. Having no central point, all compo-

nents (with an exception to broadcast receivers that may also be defined dynamically)

need to be declared by the developer of an application in the AndroidManifest.xml file.

The separation into components makes possible to use parts in other applications. For

instance, in Listing 2.17 an example of app’s AndroidManifest.xml file is shown. This

application consists of one Activity declared in Line 21. Other applications may call this

activity integrating the functionality of this component into their apps.

36

2.6. ANDROID SECURITY ON THE APPLICATION LEVEL

1 <?xml ve r s i on=” 1 .0 ” encoding=” utf−8”?>

2 <mani fes t xmlns :android=” ht tp : // schemas . android . com/apk/ r e s / android ”

3 package=”com . te s tpackage . tes tapp ”

4 andro id :ver s ionCode=”1”

5 android:vers ionName=” 1 .0 ”

6 andro id : sharedUser Id=”com . tes tpackage . shareduid ”

7 andro id : sharedUserLabe l=” @str ing / sharedUserId ” >

8

9 <uses−sdk android:minSdkVersion=”10” />

10

11 <permiss ion android:name=”com . tes tpackage . permis s ion . mypermission ”

12 a n d r o i d : l a b e l=” @str ing / mypermis s i on s t r ing ”

13 a n d r o i d : d e s c r i p t i o n=” @str ing / mype rmi s s i on de s c r s t r i ng ”

14 and ro i d : p r o t e c t i onLeve l=” dangerous ” />

15

16 <uses−permiss ion android:name=” android . permis s ion .SEND SMS”/>

17

18 <a p p l i c a t i o n

19 andro id : i c on=”@drawable/ i c l a u n c h e r ”

20 a n d r o i d : l a b e l=” @str ing /app name” >

21 <a c t i v i t y android:name=” . Tes tAct iv i ty ”

22 a n d r o i d : l a b e l=” @str ing /app name”

23 andro id :pe rmi s s i on=”com . te s tpackage . permis s ion . mypermission ” >

24 <in tent− f i l t e r>

25 <ac t i on android:name=” android . i n t en t . a c t i on .MAIN” />

26 <category android:name=” android . i n t en t . category .LAUNCHER” />

27 </ intent− f i l t e r>

28 <in tent− f i l t e r >

29 <ac t i on android:name=”com . te s tpackage . tes tapp .MY ACTION” />

30 <category android:name=” android . i n t en t . category .DEFAULT” />

31 </ intent− f i l t e r>

32 </ a c t i v i t y>

33 </ a p p l i c a t i o n>

34 </ mani fe s t>

Listing 2.17: Example of the AndroidManifest.xml file

Android provides a variety of methods to invoke the components of applications. A new

Activity is started by using the methods startActivity and startActivityForResult.

Services are started through the startService method. In this case, called service in-

vokes its method onStart. When a developer is going to establish a connection between a

component and a service she invokes the bindService method and the onBind method is

invoked in the called service. Broadcast receivers are started when an app or system com-

ponent send special messages using the methods sendBroadcast, sendOrderedBroadcast

and sendStickyBroadcast.

Content providers are invoked by the requests from content resolvers. All other com-

ponent types are activated through Intents. Intents is a special mean of communication

in Android based on the Binder framework. Intents are passed into the methods that per-

form component invocation. The called component can be invoked by two different types

of intents. To show the differences of these types, let consider an example. For instance, a

user wants to choose a picture in an application. The developer of the application can use

an Explicit Intent or an Implicit Intent to invoke a component that selects a picture. For

the first intent type, the developer realizes picking functionality in the component of his

37

CHAPTER 2. ANDROID SECURITY

application and calls this component using the Component Name data field of the explicit

intent. Of course, the developer can invoke a component of other application, but, in this

case, he has to be sure that this application is installed in the system. Generally, from the

developer’s point of view, there is no difference between the interactions of components

inside one application or among components of different applications. For the second

intent type, the developer transfers the right to choose the appropriate component to the

operating system. The intent object contains some information in its Action, Data and

Category fields. According to this information, using Intent Filters the operating system

chooses the proper component that may process the intent. An intent filter defines the

”template” of intents the component can process. Of course, the same application can

define an intent filter that will process intents from other component.

2.6.2 Permissions on the Application Level

Permissions are used not only for protecting the access to the system resources. The

developers of third-party applications may also use custom permissions to guard the access

to the components of their applications. An example of custom permission declaration is

shown in Listing 2.17 in Line 11. The declaration of custom permissions is similar to the

one of the system permissions.

To illustrate the usage of custom permissions let refer to Figure 2.6. The Application

2 consisting of 3 components wants to protect the access to two of them: C1 and C2.

To achieve this goal the developer of the Application 2 has to declare two permission

labels p1, p2 and assign them to protected components correspondingly. If a developer

of the Application 1 wants ot obtain access to component C1 of the Application 2 she

must define that her app requires permission p1. In this case, the Application 1 receives

a possibility to use the component C1 of the Application 2. If the app has not specified

the required permission, the access to the component guarded with this permission is

prohibited (see the case of the component C2 in Figure 2.6). Referring back to our

example of the AndroidManifest.xml file in Listing 2.17, the activity TestActivity is

protected with the permission com.testpackage.permission.mypermission, which is

declared in the same application manifest file. If another application wants to use the

functionality provided by TestActivity, it must request the usage of this permission,

similarly to how it is done in Line 16.

ActivityManagerService is responsible for the invocation of the components of ap-

plication. To enforce the security of app components, in the framework methods (e.g.,

startActivity described in Section 2.6.1), which are used to invoke the components, the

special hooks are placed. These hooks check if an application has permission to call the

component. These checks end with the checkUidPermission method of PackageManagerServer

(see Listing 2.16). Thus, the actual permission enforcement happens on the Application

38

2.6. ANDROID SECURITY ON THE APPLICATION LEVEL

Application 1

Application 2

C1: p1

C2: p2

C3

Uses-permission:

p1

Figure 2.6: Permission enforcement to guard the components of third-party applications

Framework level that is considered as a trusted part of the Android operating system.

Hence, the check cannot be bypassed by applications. More information about how the

components are called and permission checks can be found in [37].

2.6.3 Application Signing Process

Android applications are spread across the devices in the form of Android Application

Package files (apk files). As programs for this platform are mainly written in Java,

not surprisingly this format has a lot in common with the Java packaging format – jar

(Java ARchive), which is used to combine code, resource and metadata (from an op-

tional META-INF directory) files into one file using the zip archiving algorithm. The

META-INF directory stores package and extension configuration data, including security,

versioning, extension and services [23]. Basically, in the case of Android the apkbuilder

tool zips together built project files [4] and then this archive is signed with the standard

Java utility jarsigner [24]. During the application signing process jarsigner creates the

META-INF directory that usually contains the following files in case of Android: manifest

file (MANIFEST.MF), signature files (with .SF extension) and signature block files (.RSA or

.DSA).

The manifest file (MANIFEST.MF) consists of the main attributes section and per-entry

attributes, one entry for each file contained in the unsigned apk. These per-entry at-

tributes store information about the file name and a digest of the file contents encoded

using the base64 format. On Android, the SHA1 algorithm is used to compute the digest.

An excerpt from a manifest file is presented in Protocol 1.

The content of the signature file (.SF), which contains data to be singed, is similar to

the one of MANIFEST.MF. An example of this file is presented in Protocol 2. Main section

contains a digest (SHA1-Digest-Manifest-Main-Attributes) of the main attributes and

a digest (SHA1-Digest-Manifest) of the content of the manifest file. Per-entry section

39

CHAPTER 2. ANDROID SECURITY

Protocol 1 An excerpt from a manifest file.
Manifest-Version: 1.0

Created-By: 1.6.0_41 (Sun Microsystems Inc.)

Name: res/layout/main.xml

SHA1-Digest: NJ1YLN3mBEKTPibVXbFO8eRCAr8=

Name: AndroidManifest.xml

SHA1-Digest: wBoSXxhOQ2LR/pJY7Bczu1sWLy4=

contains digests of entries in the manifest file with the corresponding file names.

Protocol 2 An excerpt from a signature file.
Signature-Version: 1.0

SHA1-Digest-Manifest-Main-Attributes: nl/DtR972nRpjey6ocvNKvmjvw8=

Created-By: 1.6.0_41 (Sun Microsystems Inc.)

SHA1-Digest-Manifest: Ej5guqx3DYaOLOm3Kh89ddgEJW4=

Name: res/layout/main.xml

SHA1-Digest: Z871jZHrhRKHDaGf2K4p4fKgztk=

Name: AndroidManifest.xml

SHA1-Digest: hQtlGk+tKFLSXufjNaTwd9qd4Cw=

...

The last part in the chain is the signature block file (.DSA or .RSA). This binary file

contains a signed version of the signature file; it has the same name as the corresponding

.SF file. Depending on the used algorithm (RSA or DSA) it has different extensions.

It is possible to sign the same apk file with several different certificates. In this case

in the META-INF directory there will be several .SF and .DSA or .RSA files (their number

will be equal to the number of times the application was signed).

App Signature Check in Android

Most of Android apps are sealed with a developer-signed certificate (notice that for An-

droid “certificate” and “signature” can be used interchangeably). This certificate is used

for assurance that the code of the original application and its update come from the same

place, and to establish trust relationships between applications of the same developer.

To perform this check Android simply compares binary representations of certificates,

which were used to sign an application and its update (in the first case) and collaborating

applications (in the second).

This check of certificates is implemented in PackageManagerService by the method

40

2.6. ANDROID SECURITY ON THE APPLICATION LEVEL

int compareSignatures(Signature[] s1, Signature[] s2), which code is presented

in Listing 2.18. In the previous section we noted that in Android it is possible to sign

the same application with several different certificates. This explains why the method

takes two arrays of signatures as parameters. Despite the fact that this method takes

the central place in the Android security provision, its behaviour strongly depends on the

version of the platform. In the newer versions (starting from Android 2.2) this method

compares two arrays of Signature, and if both arrays are not equal to null returns

SIGNATURE MATCH value if all s2 signatures are contained in s1, and SIGNATURE NO MATCH

otherwise. Before the version 2.2, this method checked if array s1 is contained in s2.

That behaviour allowed the system to install upgrades even if they had been signed only

with a subset of certificates of the original application [5].

1 pub l i c c l a s s PackageManagerService extends IPackageManager . Stub {
2 . . .

3 s t a t i c i n t compareSignatures (S ignature [] s1 , S ignature [] s2) {
4 i f (s1 == n u l l) {
5 re turn s2 == n u l l

6 ? PackageManager .SIGNATURE NEITHER SIGNED

7 : PackageManager .SIGNATURE FIRST NOT SIGNED;

8 }
9 i f (s2 == n u l l) {

10 re turn PackageManager .SIGNATURE SECOND NOT SIGNED;

11 }
12 HashSet<Signature> s e t1 = new HashSet<Signature >() ;

13 f o r (S ignature s i g : s1) {
14 s e t1 . add (s i g) ;

15 }
16 HashSet<Signature> s e t2 = new HashSet<Signature >() ;

17 f o r (S ignature s i g : s2) {
18 s e t2 . add (s i g) ;

19 }
20 // Make sure s2 conta in s a l l s i g n a t u r e s in s1 .

21 i f (s e t1 . equa l s (s e t2)) {
22 re turn PackageManager .SIGNATURE MATCH;

23 }
24 re turn PackageManager .SIGNATURE NO MATCH;

25 }
26 . . .

27 }

Listing 2.18: The sources of method compareSignatures

Trust relationships between applications of the same developer are required in sev-

eral cases. The first case is connected with the permissions of the levels signature and

signatureOrSystem. To use the functionality protected with the permissions of these

levels, the packages declaring the permission and requesting it must be signed with the

same set of certificates. The second case related to Android’s capability to run differ-

ent applications with the same UID or even in the same Linux process. In this case,

applications requested such behavior must be signed with the same signature.

41

CHAPTER 2. ANDROID SECURITY

42

Chapter 3

Fast Detection of Repackaged

Android Applications

Mobile application repackaging on Android is known to be a source of revenue loss of

the developers, as well as an avenue for malware distribution. The ease of Android ap-

plications repackaging and proliferation of application clones in Google Play and other

markets call for new effective techniques to detect repackaged code and combat distri-

bution of cloned applications. Today all existing techniques for repackaging detection

are based on code similarity or feature (e.g., permission set) similarity evaluation. In

this chapter we propose a new approach to detect repackaging based on the resource files

available in application packages. Our tool called FSquaDRA performs a quick pairwise

application comparison, as it measures how many identical resources are present inside

both packages under analysis. The intuition behind our approach is that malicious repack-

aged applications still need to maintain the “look and feel” of the originals by including

the same images and other resource files, even though they might have additional code

included or some of the original code removed.

This chapter proceeds as follows. We introduce the problem of application repackaging

and give short description of our solution in Section 3.1. We observe our approach and

implementation details in Section 3.2, and the collected dataset in Section 3.3. Section 3.4

reports on the FSquaDRA performance, and details the comparison with AndroGuard.

Section 3.5 provides an insight into Google Play apps repackaging rates, and on discovered

clusters of very similar applications. Section 3.6 overviews the related work.

3.1 The Problem of Application Repackaging

Mobile ecosystems today represent a huge and fast growing market. Success stories of

such companies as Rovio (with the Angry Birds game) attract to the mobile business

vast amounts of developers. Yet, the developers can suffer from monetary and reputation

43

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

losses when their applications are stolen and appear on the markets repackaged.

The problem of application (app for short) stealing on Android stems from the fact

that at present it is not very difficult to repackage an Android app. Applications are

usually signed with a self-signed certificate. Thus, an adversary can easily change the

code and sign the application with his own certificate. At present, neither the official

Google Play market nor alternative markets do not detect if an application has been

repackaged. At the same time, there is a strong aspiration from adversaries to steal

applications. They can earn monetary profits either by changing the revenue destination

of advertisement libraries, or by embedding malware, which can transform phones into

controllable “zombies”. Thus, to maintain the healthiness of the Android markets there

is a strong need to detect the repackaged applications and prevent their distribution.

Currently the problem of Android application repackaging is widely explored and sev-

eral solutions to identify plagiarized applications were proposed, e.g., [63, 64, 85, 88, 118,

154]. All these solutions are based on features extracted from the application code. How-

ever, it is clear that the code itself is often impacted by the repackaging process: the added

malicious functionality (new advertisement libraries and/or malware code) modifies the

code of the app. Additionally, the usage of obfuscation libraries during the repackaging

(this possibility is explored in [96]) can further modify the code. Moreover, adversaries

can simply replicate some initial behaviour of an application (so called app spoofing [137]).

We can therefore conclude that the detection rates of repackaging for a code similarity-

based techniques decrease under the influence of these factors. Notice that the availability

of various tools like smali/backsmali [36] or apktool [3] greatly alleviates the task of code

changing and application repackaging.

Yet, it is not only the code that defines an app. Nowadays, smartphones have powerful

processors, advanced video and audio systems that are able to support screens with very

high resolutions and to produce sounds of high quality. These factors lead to the constant

demand of attractive applications. Therefore, to become popular an app should not only

include the code with interesting functionality, but should also contain attractive layouts,

images and other supplement resources, which become an integral part of user experience.

Thus, the resource files are now inseparable part of modern mobile applications and

sometimes their design requires more efforts then the process of code development, which

is greatly facilitated now by the presence of large variety of different libraries. These

resource files (resources, for short) are delivered on the device packaged together with the

code.

In this chapter we propose an approach, which can be used to detect repackaged appli-

cations based on comparison of the content of the resource files forming Android applica-

tion packages. Our approach relies on the observations that usually Android application

packages (apk files) include a significant number of resource files, and that malicious

repackagers aim to change the applications in a way they resemble the originals as much

44

3.2. OUR APPROACH

as possible. Therefore, the code parts may change but the resource files (including icons,

images, music and video files, etc.) often remain the same.

To be practical, the approach of detecting repackaged applications based on resource

files comparison needs to be fast enough, considering the vast number of Android appli-

cations (currently there are more then 700,000 apps only in the official market). Thus,

a simple pairwise comparison of all files inside two compared apps is not quite scalable

because the complexity is proportional to the product of the number of files inside two

packages multiplied by the average size of a file. We may reduce the complexity by com-

puting hashes of files and comparing only the digests. However, this solution still requires

computational resources to compute the hashes. Luckily, during the process of application

signing a hash of each file inside the apk is computed and stored inside the package. We

leverage this information to compute the similarity of applications. Thus, our approach

is fast enough to be used even for comparing applications pairwise.

To our knowledge, we are the first who propose to detect Android repackaged applica-

tions based on similarities in resource files, and not on the ones in the code.

3.2 Our approach

Android applications are spread across the devices in the form of Android Application

Package Files (apk files). As Android heavily relies on Java, it is not very surprising that

apk files have a lot in common with the Java packages. Java ARchive files (jar) are used

to combine code, resource and metadata into one file using the zip archiving algorithm.

Similarly, Android packages contain code, manifest, libraries and resource files in a zip

archive. Thus, each app includes not only the code, but also a large set of supplementary

files being an integral part of the Android package. To confirm this we analysed the

applications in our dataset. For our dataset, on average there are 315.56 files inside an

Android application, where the maximum value constitutes 11099 files and minimum is

4. Figure 3.1 shows the distribution of the number of files inside an apk obtained during

this experiment (in Figure 3.1 we limited the number of files to 2000 because there is a

small fraction of applications with more than 2000 files).

Previously, to detect repackaged applications the researchers considered predominantly

the code (classes.dex) and the manifest AndroidManifest.xml files. We propose to use

the full set of file inside apks to detect repackaging.

Our intuitions are as follows. An adversary, who clones an application, seeks to

resemble the original one as much as possible, thus, increasing the probability of the

clone installation. In Android apps code is loosely coupled with resources giving the

adversary a possibility to easily change the code. For example, the legitimate Opera

Mini application and its repackaged version containing malware [119] coincide in 230

out of 234 files inside those packages. The only different files are: resources.arsc,

45

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

AndroidManifest.xml, classes.dex and res/layout/main.xml. Clearly, the modifica-

tions in AndroidManifest.xml are required to obtain new permissions for the malware

to operate, while classes.dex was modified to embed the actual malicious code.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 8
0

0

 9
0

0

 1
0

0
0

 1
1

0
0

 1
2

0
0

 1
3

0
0

 1
4

0
0

 1
5

0
0

 1
6

0
0

 1
7

0
0

 1
8

0
0

 1
9

0
0

 2
0

0
0

#
 o

f
a
p

ks

of files inside apk

Figure 3.1: Distribution of number of files inside apk

For the scope of this work we consider two cases of repackaging: (malicious) plagiarism,

when two application packages include the same files but are signed by different develop-

ers (with different certificates), and (benign) rebranding, when two application packages

include the same files and are signed by the same certificate.

Using binary comparison of files, which constitute two Android applications, it is pos-

sible to understand to what extent these two apps are similar. Unfortunately, binary

comparison is not a cheap operation. Moreover, a file in the first app should be compared

against each file in the second package. These overheads may be considerably reduced

using comparison of the file digests (hashes). Our tool uses this technique to calculate the

similarity between two applications. At the same time, digest computation against the

content of a file requires considerable resources consumption and, thus, directly cannot be

used in a tool that has to process significant amount of apks. To overcome this limitation

we use the hashes calculated during the application signing process (see Section 2.6.3).

Thus, the overhead for hash computations does not affect our tool.

46

3.2. OUR APPROACH

3.2.1 The algorithm and implementation details

In this section we report on the algorithm and implementation details of FSquaDRA.

Protocol 3 describes the algorithm implemented in FSquaDRA for pairwise comparison

of all applications located under a specific directory provided as an argument to our tool.

Additionally, FSquaDRA has options of comparing just two apps, an application and

all packages under a specified folder or applications in two folders. The implementation

slightly changes in these cases but the main idea remains the same.

Protocol 3 The algorithm of application comparison

1: ApkAttrlist ← []
2: Apklist ← getApkFileList(path)
3:
4: \\ Get application attributes:
5: \\ certificates, relative file paths and hashes
6: for all Ai ∈ Apklist do
7: ApkNamei ← getApkName(Ai)
8: Attri ← getApkAttributesToMemory(Ai)
9: Add (fileNamei, Attri) to ApkAttrlist

10: end for
11:
12: size← length(ApkAttrlist)
13:
14: \\ Pairwise comparison of applications
15: for (k = 0; k < size; k + +) do
16: hashesk ← getF ileHashesSet(Attrk)
17: certsk ← getCertHashes(Attrk)
18: for (l = k + 1; l < size; l + +) do
19: hashesl ← getF ileHashesSet(Attrl)
20: certsl ← getCertHashes(Attrl)
21: jSim← getJaccardIndex(hashesk, hashesl)
22: sameCert← certsTheSame(certsk, certsl)
23: OUT: ApkNamek, ApkNamel, sameCert, jSim
24: end for
25: end for

To begin with, we list all the apk files that need to be considered during the analysis.

In Line 2 of Protocol 3 we select all apk files located under the directory, the path to

which is specified by the variable path provided as an argument to our tool. After that,

in Lines 6-10 FSquaDRA extracts the required information from the apk files. At first,

our tool gets the name of the file. Then it extracts the attributes of the apk using

the getApkAttributesToMemory method. In particular, it iterates over the entries in

the MANIFEST.MF file and writes the results into a map, which key corresponds to the

relative path of a file inside the package and value is equal to the SHA1 hash of the file.

Additionally, during this step FSquaDRA extracts the developer certificates, which have

been used for the application signing, and stores into Attr object the digests computed

over these certificates. This allows us to reduce the memory consumption of FSquaDRA

and speed up the certificate comparison process. The name of the app file along with the

object Attri containing all required application attributes are stored into the ApkAttrlist
list.

Lines 15-25 show how the comparison of applications is performed. This comparison

consists of two main steps, namely, the calculation of the similarity score and the compar-

47

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

ison of the certificate hashes. The latter step is implemented similarly to how it is done in

more recent versions of the Android OS. The similarity score (the FSquaDRA similarity,

or the fss score for short) corresponds to the Jaccard similarity coefficient (expressed by

Formula 3.1) computed over the sets of file hashes extracted in Line 8. Line 23 prints the

result of the comparison into a specified location (in our case, we print into a user-defined

file).

jSim(Hk, Hl) =
|Hk ∩Hl|
|Hk ∪Hl|

(3.1)

We implemented our algorithm in Java. We did not parallelize it intentionally (i.e., our

tool runs in a single-thread program). This allows us to calculate the net time required

to run our comparisons and predict the execution time and memory consumption. An

increase of a dataset results in the linear growth of the execution time for attributes

extraction, while the pairwise comparison operation cumulative time rises quadratically

(in the number of apks under consideration). In the current implementation the memory

consumption grows linearly with the number of applications.

3.3 Dataset description

Our dataset consists of 55779 Android applications. The dataset collection was performed

during June-July of 2013. During this period we explored 8 different markets: the official

Google Play [22] market and 7 third-party stores: AndroidBest [7], AndroidDrawer [8],

AndroidLife [9], Anruan [10], AppsApk [11], PandaApp [32], and SlideME [35]. Table 3.1

lists all markets used in the analysis.

Table 3.1: Markets

Market Market link # of apps
AndroidBest http://androidbest.ru/ 1662
AndroidDrawer http://www.androiddrawer.com/ 2857
AndroidLife http://androidlife.ru/ 1678
Anruan http://www.anruan.com/ 4232
AppsApk http://www.appsapk.com/ 2679
Google Play https://play.google.com/store/apps 13223
PandaApp http://android.pandaapp.com/ 14143
SlideME http://slideme.org/ 15305

Total 55779

During the analysis of alternative markets it was discovered that almost all of them, un-

like the official one, provide a possibility to download applications without authentication.

Therefore, to download an app it was simply required to get the right URL. Exploring

the store webpages, we found out that for some markets such URLs can be easily pre-

dicted. For instance, all applications from the AndroidBest market can be downloaded

using URLs tailing download.php?id=n, where n varies from 0 to the order number of the

last uploaded application. In the case when the described method could not be applied,

48

http://androidbest.ru/
http://www.androiddrawer.com/
http://androidlife.ru/
http://www.anruan.com/
http://www.appsapk.com/
https://play.google.com/store/apps
http://android.pandaapp.com/
http://slideme.org/

3.4. EVALUATION

e.g., for the AndroidDrawer market, a crawler was developed that parses html pages and

extracts the URLs to download the applications.

To collect applications from the official Google Play store we developed a tool built on

top of Google Play unofficial Python API1. Using this crawler we downloaded around 500

most popular free applications from each category.

After we downloaded the applications we performed a two-step cleaning of our dataset,

filtering out the files that could not be recognized as valid Android applications and

duplicates (those with same digests from the same market). The third column in Table 3.1

shows the final number of applications within each store. Our whole dataset occupies 317.4

GB of disk space.

3.4 Evaluation

We have run FSquaDRA on the collected app dataset on a Mac Book Pro laptop

with 2.9 GHz Intel Core i7 Processor with 2 cores, and 8GB 1600 Mhz DDR3 memory.

FSquaDRA required 15.10 hours to load all apk attributes in memory for our complete

dataset, and 64.41 hours to compute the similarity scores for all apk pairs (>109) in our

dataset consuming less than 6GB of RAM. On the dataset FSquaDRA performs on

average 6700 app pair comparisons per second. We consider these results quite encourag-

ing, as pairwise app comparison for code-based similarity metrics cannot be executed in

comparable time.

Figure 3.2 presents a histogram of positive fss scores distribution for our dataset of

55779 applications (in logarithmic scale). Notice that the app pairs with fss>0 constitute

approximately 5.41% of the total app pairs number for our dataset. To simplify presen-

tation we break down the fss values into 10 bins in the range (0, 1]. In Figure 3.2 we can

see that the vast majority of the application pairs with detected resource similarity have

the fss score in the range (0, 0.1], and that for the fss score in the range (0.7, 1] there

are more app pairs with the same certificate detected by FSquaDRA than app pairs

with different certificates. We provide more insight why this is the case in the sequel.

To evaluate the quality of our approach and its ability to detect repackaging we would

like to compare our results with some state-of-art code similarity-based repackaging de-

tection technique, like [64,88,153,154]. Unfortunately the authors have not released their

code publicly, and we were not able to obtain it. Similar problem was also reported

in [96], where the authors have resorted to use AndroGuard as a freely available tool for

comparison of code similarity in apks. Following this approach, we use AndroGuard to

provide us a metrics of code similarity for app pairs.

The main question we would like to investigate is whether the FSquaDRA similarity

metrics is correlated with the AndroGuard code similarity metrics. This can be interpreted

1https://github.com/egirault/googleplay-api

49

https://github.com/egirault/googleplay-api

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.0<
fss<

=
0.1

0.1<
fss<

=
0.2

0.2<
fss<

=
0.3

0.3<
fss<

=
0.4

0.4<
fss<

=
0.5

0.5<
fss<

=
0.6

0.6<
fss<

=
0.7

0.7<
fss<

=
0.8

0.8<
fss<

=
0.9

0.9<
fss<

=
1.0

#
 o

f
p

a
ir

s
(l

o
g

1
0

 s
ca

le
)

FSquaDRA Similarity

Different Certificates
Same Certificates

Figure 3.2: Histogram of app repackaging rates detected with FSquaDRA (logarithmic scale)

twofold:

• False positives. For applications that FSquaDRA classifies as similar, are they

similar also according to the AndroGuard classification (and vice-versa)? If our tool

classifies an app pair as similar, but there is no actual code similarity, this pair can

be interpreted as false positive. It is obvious that it is impossible to completely avoid

false positives for FSquaDRA because common resources, such as, e.g., open source

sound and image files, can raise the FSquaDRA metrics, while the code would be

different. So here we are interested in strong correlation of the similarity metrics

values.

• False negatives. For applications that FSquaDRA classifies as completely different,

are there many app pairs sharing code similarities according to AndroGuard? Again,

it is not possible to completely avoid false negatives due to the different nature of

code similarity and resource similarity, but we would like to assert that the false

negatives rate is not too high.

Notice that in this section we interpret the AndroGuard code similarity score as ground

truth. We have performed manual inspection of some application pairs to confirm the

findings of FSquaDRA (reported further), but it is impossible to inspect manually sub-

stantial number of apks in our dataset. Therefore we have to rely on the code similarity

metrics as the ground for evaluating FSquaDRA reliability.

Unfortunately, to compute a similarity value for two applications AndroGuard takes

50

3.4. EVALUATION

significantly more time than FSquaDRA and it was not possible to compute the similar-

ity metrics for the whole app corpus we have crawled. For instance, it takes approximately

65 seconds on average to compare one pair of apps using AndroGuard (the actual time of

comparison depends a lot on the similarity of apps in the pair, it takes significantly less

time to compare very similar apps than completely different ones). We cannot also rely on

a straightforward random selection of app pairs, because it is clear from Figure 3.2 that,

e.g., the share of app pairs with fss similarity in the range (0, 0.2] is a lot larger than the

share of app pairs in (0.8, 1.0], which is as interesting. Therefore, we have performed a

random selection of 100 app pairs with same certificate and 100 app pairs with different

certificates from each bin with non-null fss metrics, and we have computed the Andro-

Guard similarity metrics (ags for short) for these pairs (2000 pairs total). This selection

prohibits comparing the distributions of fss and ags values, but it enables the best selec-

tion of an app pairs corpus with different fss metrics, and without strong predominance

of some fss value range.

To evaluate the false negative rates we have randomly selected 100 apk pairs with same

certificate and 100 apk pairs with different certificates from the dataset with fss=0.

AndroGuard however was found to be not very reliable, as its similarity metrics was

discovered to be not symmetric. That is, for two apks A and B, it could be that ags*(A,B)

6= ags*(B,A), where ags* is the value computed by the AndroGuard tool directly. We

have decided to still use the existing AndroGuard implementation, but to adjust the

AndroGuard score. We have experimented with a series of app pairs, and have established

that the metrics ags= (ags*(A,B) + ags*(B,A))/2 is more faithful than the original ags*

similarity score, and we have used this metrics for comparison with FSquaDRA results.

Table 3.2 presents summary statistics computed for the randomly selected app pairs.

Notice that for non-null fss values we compare separately app pairs with same certificate

and with the different ones, as these two groups are different by nature. This observation

is indeed reinforced by the data we have. Figure 3.3 presents and a scatterplot of the

fss and ags similarity metrics values for the selected app pairs with different certificates

(potentially plagiarised). We can see the strong correlation of the values from the fig-

ure. This is confirmed by the data: the standard Pearson’s product-moment correlation

computed for data in this figure is 0.791. Notice that any value ≥0.5 is commonly con-

sidered as strong correlation. Testing for the null-hypothesis (that true correlation is non

existent) for this dataset gives that the 95% confidence interval is [0.767, 0.813]; and the

p-value≈10−16, so we can safely reject the null-hypothesis. The sample mean of the differ-

ence (fss-ags) for each selected app pair with different certificates is approximately equal

to -0.047, with standard t-test rejecting the null-hypothesis (the p-value≈10−12), and the

95% confidence interval for true mean [-0.052, -0.029]. The standard deviation for the

difference (fss-ags) is 0.186. We also present a boxplot for this difference in Figure 3.4.

These data confirm that FSquaDRA can be an effective tool to detect repackaged

51

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

Table 3.2: Summary statistics for comparison of AndroGuard and FSquaDRA similarity metrics

Sample Statistics Statistics Details
description name value

App pairs with non-null fss Mean of difference fss - ags -0.04122781 Standard one sample t-test
with different certificates 95% confidence interval: [-0.05278174, -0.02967388]
in comparison with ags; p-value = 4.62e-12
1000 app pairs Standard deviation 0.1861895

for difference fss - ags
Median -0.04799

Correlation coefficient 0.7919082 Pearson’s product-moment correlation
of fss and ags values 95% confidence interval [0.7675988, 0.8139426]

p-value ¡ 2.2e-16

App pairs with non-null fss Mean of difference fss - ags -0.276119 Standard one sample t-test
with same certificates 95% confidence interval: [-0.2928976, -0.2593405]
in comparison with ags; p-value = 2.2e-16
1000 app pairs Standard deviation 0.2703832

for difference fss - ags
Median -0.25180

Correlation coefficient 0.580733 Pearson’s product-moment correlation
of fss and ags values 95% confidence interval [0.5381128, 0.6203911]

p-value ¡ 2.2e-16

App pairs with null fss Mean of difference fss - ags -0.04124 Standard one sample t-test
with mixed certificates 95% confidence interval: [-0.05152188, -0.03095351]
in comparison with ags; p-value = 1.777e-13
200 app pairs Standard deviation 0.07375432

for difference fss - ags
Median -0.01304

applications, as the fss similarity values for app pairs with different certificates are highly

correlated with code-based similarity metrics of AndroGuard; and the average difference

in the similarity metrics produced by FSquaDRA and by AndroGuard is not significant.

Figure 3.5 presents a scatterplot of the fss and ags similarity metrics for the randomly

selected apk pairs signed with the same certificate (potentially rebranded). The standard

Pearson’s product-moment correlation for this dataset is approximately 0.58 (the null-

hypothesis on correlation is rejected, with 95% confidence interval for correlation [0.538,

0.62] , and p-value ≈10−16). This can be still interpreted as a strong correlation, but it

is less strong than for the apk pairs with different certificate. The sample mean for the

difference (fss-ags) in this dataset is approximately equal to -0.27 (standard t-test reports

95% confidence interval for true mean [-0.292, -0.259], and the null-hypothesis for sample

difference mean being zero is rejected with p-value≈10−16). This means that on average

for apks signed with the same certificate FSquaDRA tends to estimate their similarity

score noticeably lower than the code-based similarity score computed by AndroGuard.

These findings can be intuitively explained by the fact that developers tend to reuse the

code patterns across their products. For app pairs signed with the same certificate it is

clear that they can contain similar code snippets with high probability. Therefore higher

code similarity score is expectable.

We can also see from Figure 3.5 that there is a lot of app pairs with very high An-

droGuard similarity score, but varying FSquaDRA similarity score, which are most

probably the pairs impacting the correlation coefficient for this dataset. We have manu-

ally inspected some of these pairs and have managed to find several patterns, when such

situations occur. One of the most common observed case is when the same code is used for

52

3.4. EVALUATION

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FSquaDRA similarity

A
nd

ro
G

ua
rd

 s
im

ila
rit

y

Figure 3.3: Scatterplot of FSquaDRA similarity between app pairs versus AndroGuard similarity for
pairs signed with different certificates; the red line is the line of best fit, the blue curve is the LOWESS
(locally weighted scatterplot smoothing line)

displaying different content. For instance, in our dataset we found several applications,

which were developed to display books. For every book a single application has been

developed. All these applications use the same code but the resources (the book chap-

ters) are different. Thus, our tool shows low similarity score (because still some files, e.g.

classes.dex, are the same), while according to the code similarity score the applications

in the pair are the same. Similar behaviour we also witnessed with other categories of

applications, which display the same type of content, e.g., for wallpaper apps and wid-

gets. Another interesting example, which falls into this category, is when the apps in

the pair provide a UI customization functionality for the third application. In this case,

AndroGuard produces high similarity score for such pairs of apps, while because of the

difference of the UI components FSquaDRA reports low similarity.

53

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

-1
.0

-0
.5

0.
0

0.
5

1.
0

D
iff

er
en

ce
 in

 s
im

ila
rit

y
m

et
ric

s

Figure 3.4: Boxplot of the difference of FSquaDRA similarity between app pairs and AndroGuard
similarity for pairs signed with different certificates; for app pairs with fss>0

The lower correlation of the metrics can be also attributed to the usage of the same ad

libraries. This happens when the fraction of the code produced by a developer significantly

smaller than the ones brought by ad libraries. In this case AndroGuard falsely detects

applications as repackaged, while FSquaDRA produces more credible results (because

the applications are different).

Figure 3.6 presents a boxplot for the sample difference (fss-ags). In comparison with

Figure 3.4, we can notice that for apk pairs with the same signature the range of the

similarity scores difference is larger. Our data suggests that FSquaDRA may not be as

efficient for detecting repackaging in apps signed with the same certificate (rebranded), as

it is for the apps signed with different certificates (plagiarized). Nevertheless, correlation

of the FSquaDRA score with the code-based similarity score of AndroGuard is still

strong (>0.5).

Finally, Figure 3.7 presents a boxplot of the difference (fss-ags) for the randomly

selected app pairs with fss=0 (100 apk pairs with the same certificate and 100 apk pairs

with different certificates). Notice that on average FSquaDRA does not error a lot.

Indeed, the sample mean of (fss-ags), or, simply, of the ags similarity score taken with

the negative sign, is approximately -0.041, with the 95% confidence interval for the true

mean [-0.051, -0.0309], and the standard deviation for this dataset is approximately equal

to 0.0737. From these statistics and the boxplot we can see that for apk pairs not marked

as similar by FSquaDRA AndroGuard does not see significant code similarity either,

54

3.4. EVALUATION

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FSquaDRA similarity

A
ng

ro
G

ua
rd

 s
im

ila
rit

y

Figure 3.5: Scatterplot of FSquaDRA similarity between app pairs versus AndroGuard similarity for
pairs signed with same certificate; the red line is the line of best fit, the blue curve is the LOWESS
(locally weighted scatterplot smoothing line).

even for applications signed with the same certificate. Therefore we can conclude that if

developers do not include any similar resouces in apps, they also mostly do not reuse code

(this is often the case of apps produced by companies). We do not report the correlation

coefficient for this type of dataset, as the fss score equals to 0.

Table 3.3 presents the summary cumulative statistics for the the randomly selected

app pairs on which we have compared FSquaDRA with AndroGuard, and Figure 3.8

presents the boxplot for the sample mean of the difference (fss-ags) on these 2200 app

pairs. Notice the very strong positive correlation coefficient (0.7149) for the values of fss

and ags similarity scores on this dataset.

This data confirms that for plagiarized applications FSquaDRA can be an effective

tool to detect repackaging, as the fss similarity metrics values for app pairs with different

55

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

-1
.0

-0
.5

0.
0

0.
5

1.
0

D
iff

er
en

ce
 in

 s
im

ila
rit

y
m

et
ric

s

Figure 3.6: Boxplot of the difference of FSquaDRA similarity between app pairs and AndroGuard
similarity for pairs signed with the same certificate; for app pairs with fss>0.

certificates are highly correlated with code similarity-based metrics of AndroGuard; and

the difference in the similarity metrics produced by FSquaDRA and by AndroGuard is

not significant.

3.5 Cross-Market Repackaging

After asserting that FSquaDRA produces similarity metrics that is valuable for detect-

ing repackaged applications, being strongly correlated with the code similarity metrics,

we look into repackaging rates corresponding to the markets under consideration, and in-

vestigate clusters of repackaged applications. Notice that clearly any FSquaDRA score

greater than 0 for a pair of apks can be an indication that these apks are clones. However,

to increase the certainty of detecting clones we have chosen the fss value of 0.7 to be

a reliable threshold for repackaging. Based on our observations, we consider it a good

starting point for resource similarity score sufficient to reliably detect clones, and we leave

the task of identifying the threshold precisely for future work.

3.5.1 Cross-market Comparison

Table 3.4 presents the repackaging rates of Google Play applications cloned in other

markets. Under the assumption that the Google Play market is the source of original

56

3.5. CROSS-MARKET REPACKAGING

-1
.0

-0
.5

0.
0

0.
5

1.
0

D
iff

er
en

ce
 in

 s
im

ila
rit

y
m

et
ric

s

Figure 3.7: Boxplot of the difference of FSquaDRA similarity between app pairs and AndroGuard
distance for app pairs signed with same and different certificates; for app pairs with fss=0.

applications, this table reports how many cloned pairs were detected with the fss score

greater than 0.7, and the total number of apk pairs with fss>0 for all markets of our

study compared with Google Play (the corresponding subset of our dataset). In this

experiment we have compared each crawled apk in Google Play with each apk crawled in

the considered third party markets. We also provide the processing time required for each

market comparison with Google Play (Table 3.1 contains the number of apps crawled in

each market). Notice that for all markets the number of app pairs with the fss score

greater than 0.7 is not very significant. To understand better how the big is the subset

of potentially repackaged applications we also provide the total number of app pairs with

fss>0 detected, and the number of pairs with fss>0 and signed with different certificates.

From Table 3.4 we can observe that the markets with the highest repackaging rates are

AndroidDrawer (16.16% of app pairs have similarity of resources fss>0) and Google Play

(10.31% of app pairs have fss>0). We suspect that this is the case because these markets

are more popular sources of apps, in comparison with others; and malicious repackagers

that seek acquiring significant ad revenues or big user base for their botnets may target

more popular markets. Yet, this intuition needs to be confirmed with more data, and

there can be other plausible explanations.

57

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

Table 3.3: Summary statistics for comparison of AndroGuard and FSquaDRA similarity metrics for 2200
randomly selected app pairs

Sample Statistics Statistics Details
description name value

2200 app pairs, fss Mean of difference fss - ags -0.14800 Standard one sample t-test
including app pairs 95% confidence interval: [-0.1585031, -0.1374917]
with the same ags; p-value = 2.2e-16
and different Standard deviation 0.2512748
certificates, and with for difference fss - ags
fss=0 and Median -0.09894
fss>0 1st quartile -0.27380

3rd quartile 0.00000
Correlation coefficient 0.7149053 Pearson’s product-moment correlation
of fss and ags values 95% confidence interval [0.6938442, 0.7347445]

99% confidence interval [0.6869681, 0.7407324]
p-value<2.2e-16

Table 3.4: Results of experiments, each market in comparison with Google Play

Market

Repackaging Rates Time
Same Different Total fss>0 Total fss>0 with Loading apk Processing

signature signature (% of total diff. cert. attributes
pairs # pairs pair #) (% of total in memory

(fss>0.7) (fss>0.7) pair #)

AndroidBest 27 10 714258 (3.25%) 713194 (3.24%) 14.16 min 12.274 min
AndroidDrawer 528 14 6108547 (16.16%) 6097437 (16.14%) 15.46 min 56.02 min

AndroidLife 41 44 1145396 (5.16%) 1143400 (5.15%) 14.24 min 15.67 min
Anruan 106 97 3349271(5.985%) 3347895 (5.982%) 15.26 min 36.11 min

AppsApk 422 86 2105334 (5.94%) 2094716 (5.91%) 15.66 min 22.52 min
Google Play 1897 1301 9019858 (10.31%) 8985401 (10.27%) 13.28 min 59.97 min
PandaApp 755 381 10741872 (5.74%) 10726743 (5.73%) 28.52 min 136.65 min
SlideME 475 579 9496874 (4.69%) 9481029 (4.68%) 25.96 min 97.07 min

3.5.2 Application Clusters

Repackaged applications can form clusters (a set of repackaged apps stemming from some

original application). We tried to elicit and analyze strongly connected clusters containing

applications with very similar resources. The results produced by FSquaDRA can be

interpreted as an undirected labelled graph, where nodes correspond to the applications in

our dataset and edges represent similarity relationship between two applications, labelled

with the fss similarity score. Thus, to find the clusters of applications we used the

following algorithm. At first, we selected all pairs, which had shown the FSquaDRA

similarity value more than 0.7. After that in the resulting graph we searched for connected

components (i.e., set of connected nodes), which corresponded to application clusters. We

looked for clusters that have 3 and more nodes. Using this approach we discovered 71

cluster, the largest of which included 9 applications.

We have investigated manually some of the clusters, and we report on the largest two

of them (smaller clusters are not reported for the lack of space). The largest cluster with 9

nodes contains applications from 3 different markets (4 from Google Play, 4 from SlideME

and 1 from AppsApk), all signed with different certificates. The nodes are connected with

8 edges; similarity scores for app pairs not connected by an edge vary in the range [0.61,

0.7). The cluster with 8 applications contains packages distributed on 5 different markets

(2 come from Google Play, 3 from SlideME, 1 from Anruan, and 2 from PandApp). These

58

3.6. RELATED WORK

-1
.0

-0
.5

0.
0

0.
5

1.
0

D
iff

er
en

ce
 in

 m
et

ric
s

Figure 3.8: Boxplot of the difference in the FSquaDRA similarity and the AndroGuard similarity for
all randomly selected pairs (2200 pairs)

8 applications are connected by 7 nodes, and the fss scores for the app pairs not connected

by an edge vary in [0.4, 0.6). In this cluster 3 applications (from Anruan and PandApp)

were signed by the same certificate, and others were signed with different certificates.

After we manually inspected all applications in these clusters, we discovered that these

apps were legitimate applications and not maliciously repackaged. These “false positives”

appeared because all apps in the cluster used the same popular library ActionBarSher-

lock [1], which is supplied with lots of files. Additionally, the applications contained a very

limited number of their own unique files, and thus FSquaDRA falsely detected them as

repackaged applications. We performed also an analysis using AndroGuard and found

out that the code files were also very poisoned with this library. AndroGuard similarity

scores for these clusters were in the range [0.46, 0.96]. Therefore, in the shadow of the

methodology selected for our analysis this is still a good result for our tool. However, this

example clearly shows that it is desirable to implement techniques for automatic library

resources detection and exclusion, similarly as it is done for code in [64, 153]. We leave

this problem for the future work.

3.6 Related work

The AndroGuard algorithm which computes the similarity score of two applications is

presented in [66]. The similarity score is based on the analysis of Dalvik code of an app pair

59

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

and detection of identical, similar and different (new or deleted) methods in the apps. To

perform this, the algorithm a) generates a signature for each method of each application,

b) identifies all methods that are identical in both apps, c) discovers all methods that

are similar. A signature is generated based on the method control flow information, used

API calls and exceptions inside the method. If two signature hashes are identical then the

methods are considered identical. To compute the similarity between methods Normalized

Compression Distance (NCD) [60] is used. The final similarity score is computed taking

into account similarity of methods. This algorithm can be used to analyze if an application

has been plagiarized comparing it with the original. The similarity score produced by the

algorithm is a clear indicator to a developer if her application was repackaged.

In [154] the authors analyze repackaged applications in third-party markets in com-

parison with Google Play. To perform this analysis the authors have developed a tool

called DroidMOSS, which compares a pair of applications and produces a similarity score.

If similarity score is higher than 70% the applications are considered repackaged. The

algorithm uses fuzzy hashing of app code to produce a short fingerprint and then compute

the edit distance between these two fingerprints. The authors crawled 22,906 apps from

6 third-party markets and 68,187 applications from Google Play. Then they selected 200

apps from each market and compared them pairwise with all applications from the official

market. Their analysis shows that 5-13% applications hosted in alternative markets are

repackeged. These conclusions agree with our findindings reported in Section 3.5.

In the paper [153] the authors further investigate the problem of repackaged applica-

tions and concentrate on detection of piggybacked applications. Piggybacked apps are

repackaged applications that carry a payload in addition to main functionality. The

authors observe that usually the payload is loosely coupled with the rest code of the

application. Thus, to find the piggybacked applications the authors perform module de-

coupling to primary and non-primary modules, clustering nodes in program dependency

graph. After that for each primary module a fingerprint is computed, which is used to

distinguish primary module functionality. After that while iterating over the fingerprints

the linearithmic algorithm detects the applications with similar primary modules, which

are considered as piggybacked candidates. Finally, comparing the sets of non-primary

modules of these similar applications, piggybacked applications are detected. The experi-

ments reported by the authors show 1.3% of piggybacked apps in the considered dataset.

False negavive rate of the PiggyApp tool is reported as 5.2% One the most important

feature of PiggyApp that it can find repackaged applications not considering the signature

of applications.

Paper [63] presents a tool called DNADroid to detect cloned (plagiarized) applications.

Using the semantic similarity of applications the tool detects potential clone candidates.

At the second step, the tool extracts Program Flow Graph (PDG) of each method of

compared applications, applies the lossless and lossy filters, which remove PDGs of some

60

3.6. RELATED WORK

methods from consideration and, based on the subgraph isomorphism as a final criteria

of method similarity, computes similarity score of the applications. To assess DNADroid,

the authors collected 75,000 applications from 13 different third-party markets. After the

first stage of detecting potential clones they randomly selected 9,400 pairs and applied the

second step. The evaluation shows that on average the speed of processing of applications

on the second stage is 0.71 app pair/minute. Having 70% threshold, from these pairs

DNADroid managed to detect 191 pairs which are cloned. Manual analysis showed that

DNADroid produces 0% of false positives. The authors also compared their tool with

AndroGuard [2]. On 191 pairs AndroGuard failed for 24 pairs and produced very low

similarity score for 10 pairs meaning that it missed 18% of the pairs found by DNADroid.

We would like very much to use DNADroid, or its successor AnDarwin in our study, but

unfortunately it is not publicly available.

Continuing the work on DNADroid [63] Crussell et al. developed a new tool AnDar-

win [64], which unlike DNADroid does not compare applications pair-wise but instead

extract features from app code and compares them. This allows the developers to per-

form large-scale analysis of Android applications. AnDarwin is used to find plagiarized

and rebranded apps. Using a dataset of 265,359 third-party applciations collected from

17 different markets they managed to detect 4,295 cloned applications and 36,106 re-

branded applications. Moreover, the authors showed the ability of this tool to detect new

samples of known malware families. The tool operates in the following way. At first, it

represents each app as a set of semantic vectors using information extracted from PDF

of each method. Then it detects similar parts of code clustering the vectors obtained

previously. Code that appears in many apps is eliminated from the consideration because

it represents different libraries used during the development of Android applications. Fi-

nally, using partial and full similarity of semantic vectors it detects similar applications.

The analysis showed that AnDarwin’s false positive rate is about 3.72%. We plan to rely

on the approach of AnDarwin for eliminating libraries in the future. The authors also

performed in [85] a large-scale analysis of impact of cloned applications. By using mobile

traffic data from a 1-tier US cellular carrier and the collected app dataset, they assessed

the impact of Android application plagiarism by analysing the proportion of revenues

from advertisement clicks collected by plagiarized applications and the original ones. To

eliminate the effect from rebranded applications, the authors before the analysis merged

the same developers (based on the certificate used to sign an app and based on the client

ID used to uniquely identify the recipient of money for advertisement). The analysis

shows that the developers of original apps loose about 14% of advertisement revenues and

about 10% of user base due to application plagiarism.

The authors in the work [118] concentrate on investigation which applications are

likely to suffer from being plagiarised, and how to detect plagiarised applications up-

loaded to a market. The authors analysed the meta-information of 158,000 applications.

61

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

They detected that 29.4% of applciations are more likely to be plagiarised, based on

the assumption that it was more likely that a malicious developer wouldl use for pla-

giarising the applications, which alredy contained the permissions needed to perform

malicios actions. To detect plagiarized applications the authors proposed three schemes:

Symbol-Coverage, AST-Distance and AST-Coverage, which are based on symbol tables

and Abstract Syntactic Tree fingerprints. To assess the effectiveness of the developed

schemes the authors randomly selected the 7,600 applications and built Pseudo-Store.

Then they obtained a set of 15 pairs of original and plagiarised applications (which con-

tained embedded HongTouTou malware) and put them into Pseudo-Market. The results

show that AST-Coverage scheme successfully detects the upload of plagiarised applica-

tion into Pseudo-Market. The reported false-positive rate consitutes 0.5%. Moreover, the

authors show that the proposed method is resilient to different obfuscation techniques.

In the paper [137] the authors concentrated on the analysis of third-party markets. In

particular, they analysed 195 third-party markets, including Google Play, crawling totally

76,480 applications. They also selects two classes of plagiarised applications: spoofing

and grafting. Spoofing apps present little or none of the functionality of the original

application, while grafting applications consist of an existing original app with embedded

malware in it. To assess the number of malicious applications in different market the

authors uploaded them to VirusTotal and analysed the results. They found that some

markets completely consist of repackaged applications. To combat with such kind of

markets the authors developed a tool called AppIntegrity. During the installation of

an application this tool parses the package name of the app and extracts the domain

name. Then it requests this domain for public key. The requested public key is used

as an additional step to verify that the application has been developed by the developer

who owns the domain name. It could be interesting to see in the future if FSquaDRA

performs well on spoofing apps (we expect it to perform well on grafting apps).

The paper [88] presents another approach to detect code reuse among Android appli-

cations. To discover the similarities between the code they use k -grams of Dalvik opcode

sequences as features. To obtain application representation they apply hashing to the ex-

tracted features. Thus, the app representation is efficient, and they can compute pairwise

application similarity for large number of apps. The Juxtapp tool implementing this algo-

rithm can detect (a) buggy and vulnerable code reuse (b) known malware instances and

(c) pirated applications. To detect these kind of applications Juxtapp need as an input

the code that it has to find (for instance, to detect pirated applications Juxtapp needs

original applications). To assess the Juxtapp efficiency the authors ran experiment of

pairwise comparison on a set of 95.000 Android applications. One of the experiments was

run on Amazon EC2 cluster with 25 slave nodes, each having 8 virtual cores and 68.4Gb

of memory. The experiment continued about 200 minutes, about 75 of which were spent

on feature extraction. During the experiments from a dataset of 30.000 applications from

62

3.6. RELATED WORK

Android Market the authors identified 174 applications containing vulnerable patterns in

the in-app billing code and 239 apps containing those in the code, which uses Licence Ver-

ification Library(LVL). Moreover, they identified presence of 34 new instances of known

malware in the alternative Anzhi market. At the same time, according to the authors

Juxtapp cannot detect spoofing applications.

Recently, a framework for evaluating Android application repackaging detection al-

gorithms has been proposed [96]. In the paper the authors classify currently available

approaches for detection of repackaged applications and presents a framework that can

be used to assess the effectiveness of this kind of algorithms. The framework operation

resembles the way how an adversary repackages an app now. At first, he converts Dalvik

bytecode into an intermediate representation (IR), then changes something in the code

(for instance, during cracking of an application he may remove the checks whether the app

has been bought) and, finally, converts the obtained version back into Dalvik bytecode.

Moreover, on the second step the adversary may use obfuscation tools that change the

code and can prevent the detection of repackaging. Similarly, the framework prorposed

in [96] translates Dalvik bytecode into Java code, applies obfuscation techniques and

packs back the code into Dalvik representation. During the analysis the authors use the

SandMark tool [61], which provides a wide range of obfuscation techniques. The authors

proposed to assess repackaging detection algorithms by broadness (i.e., how an algorithm

can stand to obfuscation techniques applied separately) and by depth (i.e., if an algorithm

is resilient to techniques applied sequentially). As the case study, the authors applied the

framework to AndroGuard [2] – the only publicly available tool for repackaging detection.

The results show that AndroGuard can successfully combat with different obfuscation

techniques and, thus, can be widely used to detect repackaged applications.

63

CHAPTER 3. FAST DETECTION OF REPACKAGED ANDROID APPLICATIONS

64

Chapter 4

Static-Dynamic Analyser of Android
Apps

Static analysis of Android applications can be hindered by the presence of the popular dy-

namic code update techniques inherited from Java: dynamic class loading and reflection.

For example, recent Android malware samples specifically use dynamic code updates to

conceal their malicious behavior from static analysis. These techniques defuse even the

most recent static analyzers (e.g., [68,152]) which explicitly make a closed world assump-

tion. We propose an approach that augment the information available to static analyzers.

It combines static and dynamic analysis of Android applications in order to reveal the

hidden/updated behaviors and extends the method call graph of the application under

analysis with this information. We also report the results of evaluation of our implemen-

tation of the tool called StaDynA.

The rest of this chapter is organized as follows. Section 4.1 introduces the problem

of dynamic code updates in Android applications. Section 4.2 presents the results of

our study of dynamic code update techniques in benign and malicious apps. Section 4.3

motivates our research presenting a real case of dynamic code updates usage to conceal

malicious behavior. Section 4.4 presents our framework. Sections 4.5 and 4.6 provides

a background on dynamic class loading and reflection on Android. Section 4.7 details

the StaDynA implementation. Section 4.8 presents our approach to build method call

graphs and visualise them. Section 4.9 details the evaluation of StaDynA on real apps.

Section 4.10 discusses related work.

4.1 The Problem of Dynamic Code Updates

Mobile applications (apps for short) are complex programs that offer sophisticated user

experiences by exploiting the whole spectrum of dynamic features offered by modern

programming languages such as Java.

Yet, these very features of the language (e.g., Java’s reflection) combined with the

65

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

common practices adopted by mobile app developers (e.g., dynamic code updates) make

the static analysis of mobile apps a challenging task. This is particularly daunting when

static analysis is used in order to check the security of the mobile application (e.g., to

detect the presence of malicious behavior). Indeed, Rastogi et al. [121] mention reflection

among the techniques that render most of the current static analysis tools unable to detect

malicious code.

Specifically, static analysis is hindered by code that can evolve dynamically, because

some paths in the code are impossible to discover or to traverse as they are created at

runtime. As a matter of fact existing state-of-art statical analysers (e.g., [68, 152]) make

the “closed world” assumption that the code base does not change dynamically. This is

a clear simplification of what happens in the real world, where many popular, legitimate

apps use dynamically loaded code. Previous approaches that enhanced static analysis of

Java code in presence of dynamic code update techniques (e.g., [51]) cannot be directly

applied to Android due to the differences in the platforms.

Even manual reviews do not seem to offer a solution as demonstrated by Wang et

al. [138] who reported a proof-of-concept iOS app that passed successfully the App Re-

view process by Apple because its submitted code was benign. Yet the app was able to

dynamically update the code on the device in order to introduce malicious control flows

and to perform illicit tasks (such as attacking other apps and exploiting kernel vulnera-

bilities).

In this chapter we provide a solution to the problems of static analysis in presence of

dynamic code updates. Our approach complement and complete existing static analyzers,

and is efficient in uncovering hidden dangerous behaviors in Android apps.

The results of StaDynA can then be fed back to app analyzers for a more refined

analysis. It is a powerful approach that can enhance the performance of existing static

analyzers and malware detectors.

4.2 Study of Dynamic Code Updates in Apps

To understand how significant is the use of reflection and dynamic class loading (DCL) in

Android apps we performed a study of 13.863 packages obtained from Google Play [22] and

14.283 apps from several third-party markets gathered in July of 2013, along with 1260

malware samples [156]. Notice that for reflection we only consider calls which influence the

method call graph, i.e., method invocation (invoke) and constructor calls (newInstance).

All other reflection usage cases are left outside of this analysis.

4.2.1 Google Play

Google Play is the official market of the Android applications, which is supported by

Google. We downloaded about 500 top free applications from each category from Google

66

4.2. STUDY OF DYNAMIC CODE UPDATES IN APPS

Play. Table 4.1 contains the results of our analysis.

Table 4.1: Analysis of Google Play apps

Category # App DCL used by # DCL calls Refl. used by # refl. calls
APP WALLPAPER 518 120 124 464 6183
APP WIDGETS 492 119 135 468 15651
BOOKS AND REFERENCE 510 107 107 452 7899
BUSINESS 504 38 42 429 8229
COMICS 517 94 98 439 5588
COMMUNICATION 502 85 98 398 9768
EDUCATION 510 118 127 475 9376
ENTERTAINMENT 507 134 136 481 10551
FINANCE 519 78 79 459 8599
GAME 520 202 237 512 19525
HEALTH AND FITNESS 520 77 82 469 11696
LIBRARIES AND DEMO 520 88 103 369 4188
LIFESTYLE 517 104 109 473 8933
MEDIA AND VIDEO 516 118 126 455 9864
MEDICAL 518 64 65 432 6153
MUSIC AND AUDIO 513 98 107 456 11365
NEWS AND MAGAZINES 501 79 83 464 11801
PERSONALIZATION 516 90 93 452 7988
PHOTOGRAPHY 519 149 168 488 14569
PRODUCTIVITY 516 77 89 454 12082
SHOPPING 519 50 53 470 11080
SOCIAL 520 119 122 489 15990
SPORTS 520 97 102 473 9283
TOOLS 520 90 108 459 9601
TRANSPORTATION 516 58 58 424 7113
TRAVEL AND LOCAL 496 50 50 421 9184
WEATHER 517 70 76 408 6331

Total: 13863 2573 2777 12233 268590

The analysis shows that on average 19% of all applications in Google Play contain

dynamic class loading calls. The categories “BUSINESS” (8% of apps), “SHOPPING”

(10%) and “TRAVEL AND LOCAL” (10%) have shown the minimum percent, while

in the “GAME” category about 39% of the applications exploit dymanic class loading

functionality. The results can be easily understandable. During the past several years the

games for mobile platforms have evolved considerably. Almost all of them provide great

user interface, original gameplay and realistic physics. All this requires from a developer to

write tons of code for different versions of platform. Thus not surprisingly, the developers

choose a strategy when an original application (which size is limited to 50 Mb) is only

an installer, which downloads additional code from a server and loads it dynamically. On

average, there is 1.08 calls of dynamic class loading functions per application.

Considering reflection, 88% of all applications use reflection calls that are of interest

for our system. In case of the “GAME” category the percent reaches 98%, showing that

almost each applciation in this category relies on reflection. Additionally, the applications

from this category show also the highest average number of reflection calls (38.13), while

on average there are 21.96 reflection calls per app.

67

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

4.2.2 Third-party markets

This subsection reports on the result obtained during the analysis of applications re-

trieved from various third-party markets. We downloaded applications from 6 third-party

markets, namely, AndroidBest [7], AndroidDrawer [8], AndroidLife [9], Anruan [10], App-

sApk [11] and F-Droid [18]. The first 5 markets contain only apk files, while the latter

(F-Droid) distributes only open-source applications, which sources along with the final

packages can be found in this market. For each market, the cleaning procedure has been

performed, i.e., the files with the same digest of content considered as the same apps, thus,

only one representative with the same hash has been left. Although some of these markets

also divide the applications into categories, due to the peculiarities of the app crawling

process this information has been lost. Thus, in this section we the values average across

a market. The results of this analysis can be found in Table 4.2.

Table 4.2: Analysis of third-party market apps

Market # App DCL used by # DCL calls Refl. used by # refl. calls
AndroidBest 1655 35 58 1088 11598
AndroidDrawer 2677 379 516 2596 85466
AndroidLife 1677 117 138 1368 24921
Anruan 4230 162 250 2868 43444
AppsApk 2664 112 159 1907 29473
F-Droid 1380 11 11 792 10775

Total: 14283 816 1132 10619 205677

It can be mentioned that while for Google Play the average number of applications,

which uses dynamic class loading, are about 19%, in case of third-party markets this

percentage constitutes only 6%. This can be explained by the fact that we downloaded

all available applications from third-party markets, while in case of Google Play we did

only top applications, which expose complicated functionality that requires loading code

from external sources. Moreover, the F-Droid market also influence on this value because

only 1% of its applications use dynamic class loading functionality. At the same time, the

number of dynamic class loading calls is higher in third-party markets then in Google Play.

It should be mentioned that the lowest percent of applications with dynamic class loading

calls are observed for the F-Droid market, which contains only open-source applications.

This shows that among the open-sources developers there is a lower aspiration of dynamic

class loading usage.

As for the reflection, about 74% of the appls downloaded from third-party markets use

it. Similarly as for the dynamic class loading case, this percent is lower than for Google

Play applications. At the same time, the applciations from the AndroidDrawer market

have very high percent (97%) of the reflection usage. The average number of reflection

calls is 19.37 across all third-party markets, which fall downs to 13.6 calls for the F-Droid

market.

68

4.2. STUDY OF DYNAMIC CODE UPDATES IN APPS

4.2.3 Malware

Additionally to the analysis of benign applications, we perform a study of malware sam-

ples, provided by Zhou et al. [156]. The results of the analysis is reported in Table 4.3,

where a row represents the numbers obtained for one malware family.

Table 4.3: Analysis of malware

Malware Family # App DCL used by # DCL calls Refl. used by # refl. calls
ADRD 22 0 0 19 56
AnserverBot 187 187 890 187 1514
Asroot 8 0 0 0 0
BaseBridge 122 42 84 112 632
BeanBot 8 0 0 8 25
Bgserv 9 0 0 9 19
CoinPirate 1 0 0 1 4
CruseWin 2 0 0 0 0
DogWars 1 0 0 1 1
DroidCoupon 1 0 0 1 5
DroidDeluxe 1 0 0 1 2
DroidDreamLight 46 0 0 43 201
DroidDream 16 0 0 10 40
DroidKungFu1 34 0 0 7 65
DroidKungFu2 30 0 0 2 12
DroidKungFu3 309 2 4 294 1403
DroidKungFu4 96 6 8 87 518
DroidKungFuSapp 3 0 0 3 3
DroidKungFuUpdate 1 0 0 1 2
Endofday 1 0 0 1 12
FakeNetflix 1 0 0 0 0
FakePlayer 6 0 0 0 0
GamblerSMS 1 0 0 1 3
Geinimi 69 0 0 69 176
GGTracker 1 0 0 0 0
GingerMaster 4 0 0 4 8
GoldDream 47 3 6 39 127
Gone60 9 0 0 0 0
GPSSMSSpy 6 0 0 0 0
HippoSMS 4 0 0 3 3
Jifake 1 0 0 1 31
jSMSHider 16 0 0 16 80
KMin 52 0 0 41 41
LoveTrap 1 0 0 0 0
NickyBot 1 0 0 1 6
NickySpy 2 0 0 0 0
Pjapps 58 0 0 28 225
Plankton 11 11 11 11 25
RogueLemon 2 0 0 0 0
RogueSPPush 9 0 0 0 0
SMSReplicator 1 0 0 0 0
SndApps 10 0 0 0 0
Spitmo 1 0 0 0 0
Tapsnake 2 0 0 0 0
Walkinwat 1 0 0 0 0
YZHC 22 0 0 1 1
zHash 11 0 0 11 33
Zitmo 1 0 0 0 0
Zsone 12 0 0 12 36

Total: 1260 251 1003 1025 5309

The average percent of dynamic class loading usage across all malware samples shows

the highest value (20%). At the same time, the samples of the AnserverBot family have

made a major contribution to this percent (187 out of 251 applications, which use dynamic

class loading, are represented by this family). To our knowledge, the low percent may be

69

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

explained by the fact that the dynamic class loading technique has become popular only

recently, while the dataset mainly contains the samples collected in the previous years.

However, it can mention that in two families (AnserverBot and Plankton) each sample

contains dynamic class loading calls. This shows that the malware of these families rely

on dymanic class loading functionality for their operation, which is confirmed by the

reports [99, 155].

Considering the reflection usage in malware, it can be mentioned that about 81% of all

samples use this technique. At the same time, not all the examples of reflection usage are

caused by malicious functionality. According to [156], 86% malware samples are based

on the repackaged applications. Thus, the reflection usage can be also exploited in the

benign versions of the repackaged apps. This is also proved by the fact that there are

families, where not all samples expose the usage of reflection, although the percent of such

samples can be quite large.

4.3 Illustrative Example of Dynamic Code Update

Listing 4.1 is a code snippet from the AnserverBot trojan [155], which illustrates how

reflection and DCL are used to hamper static analysis for malware detection. Line 18

shows an example of dynamic class loading in Android using the DexClassLoader class.

The path to the file (stored in the str3 variable), from which the code is loaded, is

computed at runtime. It consists of two parts; the first points to the application data

directory, while the second specifies the name of the file in an encrypted form (see Line 10).

Line 18 also presents the Class object obtained using the method loadClass, which name

is specified by the paramString1 parameter.

Line 28 shows how to obtain an object of a class using the reflection call of the default

constructor. Line 30 demonstrates a method invocation. The name of the invoked method

is passed as a parameter (see Line 26) and, thus, may not be available for static analysis.

4.4 An Overview of StaDynA

Logically, the analysis process in our system can be divided into two phases: static analysis

and dynamic analysis. At the same time, in the running system these two phases are

closely interleaved providing each other required information. However, it is easier to

consider the phases in a sequential order although some events may happen simultaneously

in the working system. The architecture of StaDynA presented in Figure 4.1 comprises

two logical components: a server and a client.

The server is responsible for the performing the static analysis of an application. It

builds the initial method call graph (MCG) of the app, integrates the results of the dynamic

analysis of the information coming from the client, and stores the results of the analysis.

70

4.4. AN OVERVIEW OF STADYNA

1 [com . sec . android . p rov ide r s . drm . Doctype]
2 pub l i c s t a t i c Object b(F i l e paramFile , S t r ing paramString1 , S t r ing paramString2 , Object []
3 paramArrayOfObject)
4 {
5 St r ing s t r 3 ;
6 i f (paramFile == n u l l) {
7 St r ing s t r 1 = a . g e t F i l e s D i r () . getAbsolutePath () ;
8 // get the name o f the f i l e to be loaded
9 //9CkOrC32uI327WBD7n −> / anserverb . db

10 St r ing s t r 2 = Xmlns . d(”9CkOrC32uI327WBD7n ”) ;
11 s t r 3 = s t r 1 . concat (s t r 2) ;
12 }
13 f o r (F i l e l o c a l F i l e = new F i l e (s t r 3) ; ; l o c a l F i l e = paramFile) {
14 St r ing s t r 4 = l o c a l F i l e . getAbsolutePath () ;
15 St r ing s t r 5 = a . g e t F i l e s D i r () . getAbsolutePath () ;
16 ClassLoader l o ca lC la s sLoade r = a . getClassLoader () . getParent () ;
17 // get the c l a s s s p e c i f i e d by ” paramString1 ” from anserverb . db
18 Class l o c a l C l a s s = new DexClassLoader (s t r4 , s t r5 , nu l l , l o ca lC la s sLoade r) . l oadClas s (

paramString1) ;
19 Class [] arrayOfClass = new Class [5] ;
20 arrayOfClass [0] = Context . c l a s s ;
21 arrayOfClass [1] = Intent . c l a s s ;
22 arrayOfClass [2] = BroadcastRece iver . c l a s s ;
23 arrayOfClass [3] = F i l e D e s c r i p t o r . c l a s s ;
24 arrayOfClass [4] = St r ing . c l a s s ;
25 // get the method s p e c i f i e d by ” paramString2 ”
26 Method localMethod = l o c a l C l a s s . getMethod (paramString2 , arrayOfClass) ;
27 // c r ea t e new in s tance o f the c l a s s
28 Object l o ca lOb j e c t = l o c a l C l a s s . newInstance () ;
29 // c a l l the corresponding method with arguments in array ”paramArrayOfObject”
30 re turn localMethod . invoke (loca lObjec t , paramArrayOfObject) ;
31 }
32 }

Listing 4.1: Illustrative example: DCL and reflection usage in AnserverBot

The client part is a modified Android operating system, hosted either on a real device or

an emulator. The client runs the application whenever the dynamic analysis is required.

From a logical perspective, our system interleaves the execution of static and dynamic

analysis phases. To simplify the presentation, we describe them sequentially.

Preliminary Analysis. The server statically analyzes an app package and builds a MCG

of that application (see Step a in Figure 4.1; solid arcs denote edges resolved statically

from the apk). Dynamically loaded code is not present in the MCG built during this

phase. Further, a method called through reflection may also not be inferred if the name

is represented as an encrypted string. Sometimes DCL and reflection are used together,

the former loads new code into memory, whose parts are then called by using the latter.

In Figure 4.1 the dashed arcs and a part of the MCG in the dashed oval represent the

MCG parts that cannot be resolved statically, but can be discovered by StaDynA. Still,

a static analyzer can effectively detect the points in the MCG where the functionality

of an application may be extended at runtime. Indeed, the usage of reflection and DCL

requires the usage of specific API calls provided by the Android platform. The server

detects these calls during the static analysis phase by searching for methods, where DCL

and reflection API calls are performed. We call these methods methods of interest (MOI).

71

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

APKAPK

SERVER CLIENT

REFLECTION

DEXLOADING

adb

1

2

3

4

a
b

Figure 4.1: System overview

Dynamic Execution. If MOIs have been detected in the application, StaDynA installs

the app on the client (Step 2) and launches the dynamic analysis. The dynamic phase is

exercised to complement the MCG of the app and to access the code loaded dynamically.

The dynamic analysis is performed on a device (or an emulator) with a modified Android

OS. The added modifications log all events when the app executes a call using reflection,

or when additional code is loaded dynamically. Along with these events, the client also

supplies some additional information. E.g., in the case of a reflection call, the information

about the called function and the stack trace (it contains the ordered list of method calls,

starting from the most recent ones) is added. Thus, the first function after reflection or

DCL calls must correspond to a MOI detected during the static phase.

Analysis Consolidation. The information collected by the dynamic execution is passed

back to the server side (Step 3). The server analyzes it and complements the MCG of the

app with a new edge (in Figure 4.1 it is represented by a dashed arc), which connects the

node of the method that initiated the call through reflection (the node at the beginning)

with the one corresponding to the called function (the node at the end).

When DCL is triggered the client infers which file was used to get the code from.

Using this evidence the server downloads the file (Step 4) with the code, and performs the

static analysis on it. The MCG of the app is then updated with the obtained information.

Additionally, for each downloaded file the server analyzes whether it contains other MOIs.

If it does, the list of the MOIs for the application is updated. This allows StaDynA to

unroll nested MOI. Similarly to the reflection case, the server also obtains the stack trace

data that are used to detect the source of the DCL call.

72

4.5. ANDROID CLASS LOADING OVERVIEW

The process is then re-iterated until the analyst is satisfied.

Marking Suspicious Behaviour. The dynamic capabilities (reflection and DCL) cannot

help the malicious app to bypass the sandbox perimeter. At the same time, the dynamic

behaviour of an app can conceal a malicious payload from the static and dynamic analysis

of Google Bouncer [117]. Yet, the recent studies show that users simply agree with all

permissions an app asks, even when the app functionality does not apparently need the

requested permission [74].

Based on these assumptions, we consider the following app behaviour patterns as sus-

picious :

• An application loads dynamically the code that calls API functions protected with

permissions. Indeed, malware can use this approach to run the code that could not

be marked as suspicious by a static analyser because it does not call protected API.

• An application calls through reflection an Android API protected with a permission.

This functionality can be used, for instance, to send malicious SMS, which cannot

be detected by static analysis tools because the name of the SMS send function is

encrypted and decrypted only at runtime.

Detection of these suspicious patterns has been added to our tool. StaDynA raises

a warning if such patterns occur during the analysis. In a later section we show that

analyzed malware families do indeed expose such suspicious behavior.

4.5 Android Class loading overview

The Dalvik Virtual Machine (Dalvik VM or DVM) allows a developer to exploit class

loading functionality. This capability supports the developer need to load classes run-

time from alternative locations such as internal storage or over the network [59]. This

functionality in case of Android is usually used to:

1. Run applications that have more than 64K method references. Maximum number

of method references in a dex file is 64K, but additional methods can be put in a

separate dex file and loaded dynamically.

2. To extend the functionality of applications or frameworks at runtime with plug-ins

loaded dynamically.

At the same time, although Android allows to load code dynamically and execute it,

Google strongly recommends to avoid using this feature [34]. These recommendations are

based on the fact that the Dalvik VM does not provide the secure environment for the

code supplied dynamically. Thus, this code has the same permissions as the application

73

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

that loads this code. Moreover, the Dalvik VM does not isolate code from the underlying

operating systems capabilities and, thus, dynamically loaded code can operate with native

libraries without any constraints [34].

4.5.1 Android Class Loaders

Class loaders are responsible for controlling the loading of classes into the Dalvik VM.

The process of loading classes in Android resembles the one implemented for the Java

VM [105,132]. As in the Java VM, there is also the bootstrap class loader responsible for

loading core API classes. The system class loader is responsible for loading application

classes. Additionally, an application may define additional class loaders to provide special

ways of class loading.

In Android, as in Java, class loaders form a tree. To organize this structure, each class

loader holds a reference to its parent. The bootstrap class loader is the root of this tree

having a null reference to its parent. In Android all particular class loaders are derived

from java.lang.ClassLoader (possibly indirectly). Android provides several concrete

implementations of this class, PathClassLoader and DexClassLoader being the widely

used ones.

4.5.2 Class Loading Process

When a class loader is asked to load a new class (loadClass method) the following steps

are performed. At first, it performs a search to discover if this new class is already been

loaded by the current class loader using findLoadedClass method. If the class is not

found, the system tries to call loadClass method of the parent class loader (i.e., it tries

to find the class loaded by the parent class loader). The process continues until the system

reaches BootClassLoader, which calls the native method loadClass of the bootstrap class

loader. If the class is not found by the bootstrap class loader ClassNotFoundException

is generated. The exception is propagated back to the previous class loader in the tree.

If it fails to find the class, ClassNotFoundException is rethrown. The process continues

back till the class loader, which has been asked to load a class. If this loader fails to load

the class, ClassNotFoundException runtime exception is released.

4.5.3 Android class loading peculiarities

In Java there are two class loader methods that allow to load classes: loadClass and

defineClass. The former finds and loads a class and returns a Class object if it is found.

The latter allows to define a class from a byte sequence. At the same time, in Android the

defineClass method in the ClassLoader class is defined as final, which means it cannot

be overridden in nested classes, and just throws an UnsupportedOperationException

exception. Therefore, the defineClass method currently cannot be used in Android.

74

4.6. REFLECTION

Additionally, there is a special class DexFile in Android, which methods are used

to load code from a file. DexClassLoader and PathClassLoader indirectly use these

methods to load classes into the process memory. At the same time, DexFile methods

can be invoked directly without using a class loader. However, a reference to a class loader

is still needed, but in this case class loader methods are not called directly.

4.6 Reflection

Vast majority of computers are based on Von Neumann architecture. According to this

architecture program instructions and data are stored in the same memory, thus in the

memory there is no difference between them. Thus, there are no obstacles to observe and

manipulate program instructions as data. In the earliest computers there were no obstacles

to treat program instructions as data. Thus, assembly language in these computers had

reflection capabilities because it allowed programmers to make programs that could modify

themselves. Later, in more high-level languages as C reflective ability disappeared and

then became available only in languages that has reflection embedded in their type system.

The first language that has this ability is 3-Lisp [131] that was described in 1982. After

that reflection appeared in many different languages. In 1997 reflection became available

for Java with the release of JDK 1.1 [25].

The ability of a program to manipulate as data something representing the state of the

program during its own execution is called reflection [50]. According to [50] there are two

variants of this manipulation: introspection and intercession. Introspection is the ability

for a program to observe and therefore reason about its own state. Intercession is the

ability for a program to modify its own execution state or alter its own interpretation or

meaning.

4.6.1 Reflection usage in Android

Although Android is based on the DVM, the Android reflection API is almost the Java’s

one. The API is used to access class information at runtime, and use this information to

create new objects, invoke class methods, change the values of data field members [140].

More precisely, in Android the reflection API is used for the following purposes [140]:

• Hidden API method invocation. The developers of the Android operating system may

mark some methods as hidden. In this case, the declaration of these methods does

not appear in the SDK library and, thus, is not available for application developers.

At the same time, app developers, who want to use these undocumented features of

Android, may use the reflection API to invoke them.

• Access to the private API methods and fields. During the compilation, the compiler

ensures that the rules of access to fields and methods according to the specified

75

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

modifiers hold. Unfortunately, using the reflection API at runtime it is possible

to manipulate with modifiers and, therefore, gain access to private variables and

methods.

• Conversion from JSON and XML representation to Java objects. The reflection is

heavily used in Android to automatically generate JSON and XML representation

from Java objects and vice versa.

• Backward compatibility. It is advised to use reflection to make an app backward

compatible with the previous versions of the Android SDK. In this case, the reflection

is exploited either to call the API methods, which have been marked as hidden in

the previous versions of the Android SDK, or to detect if the required SDK classes

and methods are present.

• Plugin and external library support. In order to extend the functionality of an appli-

cation, the reflection API may be used to call plug-ins or external library methods

provided during runtime.

4.6.2 Reflection API

According to [50] there are two variants of this manipulation: introspection and interces-

sion. This section considers introspection and intercession methods of the reflection API

provided by the Android OS.

Introspection

Introspection considers the reflection API in Android which allows a program to observe

and reason about its state and the context:

• Retrieving Class objects. To start inspecting a class, at first, it is required to ob-

tain a Class object that describes the model of this class. There are several ways

how to get this type of model. The most common is the call Class.forName, which

allows to obtain a Class object giving the name of the class as a string. Addition-

ally, it is possible to get a Class object given an object of this class (using getClass

method); specifying class literal (adding .class extension to the class name or .TYPE

for primitive type wrappers); using dependent classes (it is possible to infer Classes

of the objects declared in a given class). Moreover, class loaders also have meth-

ods (loadClass and defineClass), which give a possibility to get a Class object.

Additionally, Android provides its own way using loadClass method of DexFile.

• Accessing Constructor objects. Having a Class object it is possible to get access to the

Constructor objects of this class using the getConstructor method or its counter-

parts getConstructors, getDeclaredConstructor or getDeclaredConstructors.

76

4.7. IMPLEMENTATION

• Accessing Methods. Similarly to obtaining access to Constructor objects, it is possible

to get access to Method objects. For instance, using the getMethods call it is possible

to retrieve an array of all public methods of the Class object. Additionally, one of

the most popular ways is to use getMethod call, which returns a Method object with

the given name and parameter types.

• Accessing Fields. Equivalently, it is possible to get access to the Field objects using

the calls getField, getFields, getDeclaredField and getDeclaredFields.

Intercession

Intercession considers the methods how an application using the reflection API is able to

modify its own execution state:

• Object creation. Having a Class or Constructor object it is possible to create an

object of the class by using newInstance call of the Class and Constructor objects

respectively. It should be mentioned that using the former call it is possible to invoke

only the default (zero-argument) constructor, while in the latter case it is possible

to provide parameters into the constructor.

• Method invocation. Methods obtained through a Class object can be invoked using

the invoke method. It is also possible to invoke static methods providing null as a

first parameter. Otherwise, an object reference on which the method is called needs

to be passed.

• Modification of field values. Using families of methods for getting (get*) and setting

(set*) it is possible to get and set the values of class fields correspondingly.

4.7 Implementation

This section provides the implementation details of some key aspects of StaDynA. The

detailed workflow of our system is shown in Figure 4.2. StaDynA consists of two main

parts: a server and a client. The server part is responsible for static analysis, while the

dynamic analysis is performed on the client part. The communications between the server

and client parts are carried out using Android Debug Bridge (ADB), a standard tool for

communications between an Android device and a computer. On top of standard ADB

commands, we implemented the media for communication between the server and client

parts.

The analysis of an application starts at the server side. A special program (considered

in details in Section 4.7.1) looks for reflection and DCL occurrences in the code of the

provided app. In case neither of them is found, our program builds a MCG of the app and

exits. Otherwise, it starts the dynamic analysis on a device with the modified Android OS,

77

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

which constitutes the client part of StaDynA. The details of the client implementation

are considered in Section 4.7.2.

USER CLIENT

APK Get Code

Analyze code

Build MCG

Analyze

DCL Event

Stop

Analysis?

App

Testing

DCL

triggered

Reflection

triggered

Analyze

Reflection

Event

MCG

STAT

FILES

noyes

1

2

3

4 5

6

a

bc

e

fg

SERVER

Uncovered MOI

MCG

Analyze call

Add edge

d

Triggering

Solution

Figure 4.2: The StaDynA workflow

4.7.1 The server part

The server part of StaDynA is a Python program, which interacts with a static analysis

tool. Currently, StaDynA uses AndroGuard [2] as a static analyser, which is a project

encompassing a set of tools for static analysis of Android apps. AndroGuard represents

compiled Android code as a set of Python objects that can be manipulated and analysed.

However, StaDynA can work together with any static analysis tool that is able to analyse

apk and dex files.

The server part of StaDynA starts the analysis of the provided app by extracting

classes.dex file (see Step 1, 2 and 3 in Figure 4.2), and then dissects the extracted code.

The algorithm for the main steps is shown in Protocol 4. During this step StaDynA

relies on the modified version of AndroGuard. The basic version of AndroGuard did not

allow StaDynA to select all possible patterns of reflection and DCL calls. The updated

list of patterns searched by StaDynA is presented in Table 4.4.

If MOIs are found StaDynA selects a device (real phone or emulator) to perform

the dynamic analysis (Line 7) and then installs the app under analysis (Line 9) on the

client side (see Step 5 in Figure 4.2). After that the server part obtains the UID of the

installed package (Line 10) and starts a loop (Line 12 - 19) that analyses logcat messages

78

4.7. IMPLEMENTATION

Protocol 4 App analysis main function algorithm

1: function perform analysis(inputApkPath, resultsDirPath)
2: makeAnalysis(inputApkPath)
3: if !containsMethodsToAnalyze() then
4: performInfoSave(resultsDirPath)
5: return
6: end if
7: dev ← getDeviceForAnalysis()
8: package name← get package name(inputApkPath)
9: dev.install package(inputApkPath)

10: uid← dev.get package uid(package name)
11: messages← dev.getLogcatMessages(uid)
12: loop
13: msg ← dequeue(messages)
14: analyseStadynaMsg(msg)
15: if finishAnalysis then
16: performInfoSave(resultsDirPath)
17: return
18: end if
19: end loop
20: end function

one by one. If a user finishes the analysis (Line 15) StaDynA saves the results (Line 16)

and finishes its execution. If no MOI is found in the analysed application (Line 3 in

Protocol 4), the server part of StaDynA saves the information about the analysed file

(Line 4) and exits.

Table 4.4: The list of searched API calls

Class Method Prototype
Dynamic class loading

Ldalvik/system/PathClassLoader; < init > .
Ldalvik/system/DexClassLoader; < init > .

Ldalvik/system/DexFile; < init > .
Ldalvik/system/DexFile; loadDex .

Class instance creation through reflection
Ljava/lang/Class; newInstance .

Ljava/lang/reflect/Constructor; newInstance .
Method invocation through reflection

Ljava/lang/reflect/Method; invoke .

Basically, each obtained message is represented in the JSON format and contains the

values for the following fields: UID (required), operation (required), stack (required), class

(optional), method (optional), proto (optional), source (optional), output (optional). The

value of the UID field is used to obtain the messages produced by the installed app. An

example of StaDynA message is shown in Listing 4.2

A function, which analyses the selected StaDynA messages obtained from the client,

is implemented on the server. It extracts the value of the operation field and based on

this value selects the appropriate routine to analyse the message. The function prototype

is presented in Protocol 5.

The routines for the reflection messages analysis are similar, so we consider them on

the example when operation corresponds to reflection invoke. The algorithm for analysis

of the reflection invoke message is shown in Protocol 6. Lines 2 - 4 extracts the method

name along with its class name and the prototype, which has been called through reflec-

79

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

1 {” uid ” : ”10044” , ” operat ion ” : ”2” , ” c l a s s ” : ”Lcom/ t e s t / r e f l e c t i o n t e s t R e f l e c t i o n C l a s s ; ” , ”method” : ”
t e s t R e f l e c t i o n ” , ” s tack ” : [” Ldalv ik / system/VMStack ; , getThreadStackTrace , (Ljava/ lang /
Thread ;) [Ljava/ lang / StackTraceElement ; ” , ”Ljava/ lang / r e f l e c t /Method ; , invoke , (Ljava/ lang /
Object ; [Ljava/ lang / Object ;) Ljava/ lang / Object ; ” , ”Lcom/ t e s t /
r e f l e c t i o n t e s t R e f l e c t i o n M a i n A c t i v i t y ; , c a l lRe f l e c t i onFunc t i on , ()V” , ”Lcom/ t e s t /
r e f l e c t i o n t e s t R e f l e c t i o n M a i n A c t i v i t y ; , onClick , (Landroid /view/View ;)V” , ” Landroid /view/
View ; , performClick , ()Z” , ” Landroid /view/ View$PerformClick ; , run , ()V” , ” Landroid / os /
Handler ; , handleCal lback , (Landroid / os /Message ;)V” , ” Landroid / os /Handler ; , dispatchMessage
, (Landroid / os /Message ;)V” , ” Landroid / os /Looper ; , loop , ()V” , ” Landroid /app/ ActivityThread
; , main , ([Ljava/ lang / St r ing ;)V” , ”Ljava/ lang / r e f l e c t /Method ; , invokeNative , (Ljava/ lang /
Object ; [Ljava/ lang / Object ; Ljava/ lang / Class ; [Ljava/ lang / Class ; Ljava/ lang / Class ; IZ) Ljava/
lang / Object ; ” , ”Ljava/ lang / r e f l e c t /Method ; , invoke , (Ljava/ lang / Object ; [Ljava/ lang / Object ;
) Ljava/ lang / Object ; ” , ”Lcom/ android / i n t e r n a l / os / ZygoteInit$MethodAndArgsCaller ; , run , ()V”
, ”Lcom/ android / i n t e r n a l / os / Zygote In i t ; , main , ([Ljava/ lang / St r ing ;)V” , ” Ldalv ik / system/
Nat iveStart ; , main , ([Ljava/ lang / St r ing ;)V”] , ” proto ” : ” (Ljava/ lang / St r ing ;)V”}

Listing 4.2: An example of StaDynA message

Protocol 5 The algorithm of the client message analysis

1: function analyseStadynaMsg(message)
2: msgOp← message.get(JSON OPERATION)
3: if msgOp == MSG REFL INV OKE then
4: processReflInvokeMsg(message)
5: else if msgOp == MSG REFL NEWINSTANCE then
6: processReflNewInstanceMsg(message)
7: else if msgOp == MSG DEX LOAD then
8: processDexLoadMsg(message)
9: end if

10: end function

tion (invoke destination obtained from client invDstFrCl). Line 5 gets the stack from

the message. Line 7 searches for the first reflection invoke call position in the stack. The

next position corresponds to the method, which has called this reflection invSrcFrStack

(Line 9). Then in the loop StaDynA compares this method with the list of MOIs ex-

tracted from the application executable (Lines 10 - 20). If the method is found StaDynA

complements the MCG with the obtained information (Line 15), and deletes it from the

list of uncovered invoke MOIs(Line 17). Otherwise, it adds this method to the list of

suspicious methods (Line 21). This information is later analysed to see why the reflection

calling method was not found in the application executable during static analysis phase.

Similar procedure also occurs in the case if a call of a class constructor through reflection

is performed.

The processing function for the DCL message slightly differs (see Protocol 7). From

the message it obtains the source path of the file used to load the code (Line 2). Using this

information, StaDynA downloads the file locally (Line 4), and processes it (Line 5). This

process includes computation of the file hash and copying the file into the results folder

with a new filename, which includes computed hash. The file hash allows us to check (in

the function fileAnalysed, Line 14), which files have been already loaded, and thus, to

avoid further extra analysis of already analyzed code. Otherwise, the code analysis for

MOIs is performed for the loaded code (Line 15). Function getDLPathFrStack (Line 6)

searches for a pair of a DCL call and a MOI in the stack corresponding to the “DCL”

MOI extracted from the app executables. If this pair is found, then it is removed from

80

4.7. IMPLEMENTATION

Protocol 6 The algorithm for analysis of the reflection invoke message

1: function processReflInvokeMsg(message)
2: cls← message.get(JSON CLASS)
3: method← message.get(JSON METHOD)
4: prototype← message.get(JSON PROTO)
5: stack ← message.get(JSON STACK)
6: invDstFrCl← (class,method, prototype)
7: invPosInStack ← findFirstInvokePos(stack)
8: thrMtd← stack[invPosInStack]
9: invSrcFrStack ← stack[invPosInStack + 1]

10: for all invPathFrSrcs ∈ sources invoke do
11: invSrcFrSrcs← invPathFrSrcs[0]
12: if invSrcFrSrcs 6= invSrcFrStack then
13: continue
14: end if
15: addInvPathToMCG(invSrcFrSrcs, thrMtd, invDstFrCl)
16: if invPathFrSrcs ∈ uncovered invoke then
17: uncovered invoke.remove(invPathFrSrcs)
18: end if
19: return
20: end for
21: addSuspiciousInvoke(thrMtd, invDstFrCl, stack)
22: end function

the list of uncovered DCL calls (Line 11). If the pair is not found, StaDynA adds the

information about the dynamic code loading into the list of suspicious calls (Line 18).

Protocol 7 The algorithm for analysis of the DCL message

1: function processDexLoadMsg(message)
2: source← message.get(JSON DEX SOURCE)
3: stack ← message.get(JSON STACK)
4: newFile← dev.get file(source)
5: newFilePath← processNewFile(newFile)
6: dlPathFrStack = getDLPathFrStack(stack)
7: if dlPathFrStack then
8: srcFromStack ← dlPathFrStack[0]
9: thrMtd← dlPathFrStack[1]

10: if dlPathFrStack ∈ uncovered dexload then
11: uncovered dexload.remove(dlPathFrStack)
12: end if
13: addDLPathToMCG(srcFromStack, thrMtd, newFilePath)
14: if !fileAnalysed(newFilePath) then
15: makeAnalysis(newFilePath)
16: end if
17: return
18: end ifaddSuspiciousDL(newFilePath, stack)
19: end function

Notice that the provided algorithms are simplified. For instance, in StaDynA the

same MOI can in fact be used several times to call different functions or to load different

code files (e.g., see the MCG in Figure 4.5, where the same “reflection invoke” node is

used to call different methods).

4.7.2 The client part

The client part may be run either on a real device or on an emulator. Using the emulator

is more convenient because one can run the client and server parts on the same machine.

Moreover, it is possible to run several instances on the same machine and there is no need

to attach several devices to a server. However, there can also be some drawbacks in using

the Android emulator as a client side. The main drawback is that currently the Android

81

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

emulator is very slow. Moreover, mobile applications may suppress some functionality

if they detect they are running in the emulated environment. With these limitations in

mind, we implemented and tested our client part on a real device. However, the code is

not device-dependent so it can be easily ported to an emulator or another device. As a

reference device Google Nexus S smartphone is used. The modifications were added to

the Android OS version 4.1.2 r2.

To obtain the information required for the analysis of reflection and DCL usage, we

have modified the DVM and libcore. To obtain the information related to the DCL the

method openDexFile of the DexFile class was modified. This method is called when a

new file with the code is opened. It acquires three parameters as an input, two of which

sourceName and outputName are of our interest. The added code forms a JSON message

that contains the path to the file, from which the code is loaded (sourceName) and the

path to the optimized version of the code (outputName). Along with this information,

the stack trace data and the UID of the process are also added into the message, which

then printed out to the main log file of Android.

To get the information about invocation through reflection, a hook was placed into

the invoke method of the Method class. Each Method object has declaringClass, name

and parameterTypes fields, which represent class name, method name and prototype

of the invoked method respectively. This information along with the stack trace is put

into the StaDynA message. Similarly, to log the information about new class creation

through reflection, we put our hooks into the newInstance method of the Class and

Constructor classes. However, in this case the name of the called method is fixed and

equal to <init>. Moreover, the prototype in the first case is also fixed to value ()V

because the Class.newInstance method is intended to call the default constructor of a

class.

Each StaDynA message contains the stack trace information. Stack trace is a se-

quence of method calls performed in the current thread starting from the most recent

ones. The information from a stack trace is usually used to find the origin of an exception

in a program. In our case, the stack trace information is used to detect the MOI, which

calls the reflection or DCL methods. Basically, a stack trace is an array of stack trace ele-

ments. Each stack trace element contains information about the class name, the method

name and the line number of the method in the sources. Unfortunately, using only this

information without access to the sources of the app it is impossible to uniquely identify

the MOI, because due to the function overloading it is possible when several methods in

a class have the same name. Thus, to select the appropriate MOI from the stack trace,

the information about the method prototype must be also added to a stack trace element,

because the method name and its prototype allow to uniquely identify the method in

the class. To obtain these data we modified StackTraceElement giving it a possibility

to store the method prototype information (a separate field named prototype, which is

82

4.8. METHOD CALL GRAPH

filled by our modified Dalvik VM).

A StaDynA message has a header and a body. To distinguish StaDynA from other

log messages the client adds a special marker to the header. This marker allows the server

to perform the preliminary filtering of messages leaving only the ones generated by the

client. The second part of the message header is the part number. Currently, there is

a limit in Android on the log entry size. The maximum size of a message is limited by

the constant LOGGER ENTRY MAX PAYLOAD. At the same time, a StaDynA message may

exceed this limit. To overcome this problem, the client part of StaDynA split a message

into several parts if it does not fit the maximum size of the log entry. The sequential

number of a part is also added into the header, and is later used by the server to assemble

the original message.

4.8 Method Call Graph

As a result StaDynA generates a MCG. Our implementation of MCG supports the visu-

alisation of the peculiarities discovered during the work of StaDynA. Our tool facilitates

the analysis of Android apps with dynamic features discovered during the analysis. We

exemplify the capabilities of StaDynA on a simple application that exploits dynamic be-

haviour patterns, while the full description of graph components is given in Section 4.8.1.

This application dynamically loads code and performs calls of the loaded methods through

reflection. The MCG of the app before the analysis is shown in Figure 4.3, while the graph

obtained with StaDynA is demonstrated in Figure 4.4.

Figure 4.3: The MCG of the app before StaDynA

Figure 4.3 illustrates that after the static phase StaDynA selects 3 paths, which are

83

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

Figure 4.4: The MCG of the app after StaDynA

surrounded by dashed ellipses. Ellipse 1 shows that a MOI (the dark grey node) invokes

a constructor (the dark green node) through reflection. Similarly, Ellipse 2 displays a

method invocation through reflection. Ellipse 3 depicts that the DCL call (the red node)

is performed in a method (the dark grey node). The description of all types of nodes and

all possible edges is available later on in this section.

After StaDynA’s analysis the graph is extended considerably (Figure 4.4). A number

of additional nodes and edges appeared. During the dynamic analysis StaDynA added

the edges that are outlined by Ellipses 4-7. Ellipse 4 shows that in the result of a DCL

call (the red node) a new code file has been loaded (the pink node). The loaded code is

analysed and the MCG is complemented with new nodes and edges from the loaded file.

Ellipse 7 reflects that a class constructor (the grey node) is called through reflection. This

ellipse depicts the case when a MOI has been resolved. Ellipse 5 shows a method invoked

through reflection. However, the latter case differs from the previous one in the sense that

the called method is attached with the blue node. The edge in Ellipse 6 indicates that the

invoked method contains dangerous functionality protected by an Android permission.

This kind of edges added at runtime allows us to raise a flag of suspicious behaviour.

To obtain the map of API calls and corresponding permissions PScout [45] was used.

In fact, AndroGuard provides similar functionality, but unfortunately, the map used in

AndroGuard was obtained for Android 2.2 using [74], which can be considered obsolete

now. We modified AndroGuard to use the map produced by PScout for Android 4.1.2.

84

4.8. METHOD CALL GRAPH

Each node type is assigned with a set of attributes. The analysis of the values of

these attributes may facilitate the dissection of Android applications having a complete

method call graph obtained with the help of StaDynA. For instance, each method node

is assigned with attributes, which correspond to class name, method name and signature

of this method. A permission node is assigned with the permission level along with the

information about the API call that it protects.

4.8.1 Method call graph description

All nodes used in our method call graph fall into two categories:

• Real nodes . Real nodes represent real methods and functions, which constitute

application.

• Fake nodes . Fake nodes have been added to facilitate the analysis of Android

applications, in particular with the help of StaDynA.

All nodes are grouped into several types. In particular, the following types constitute

the category of real nodes:

• Method nodes. These nodes represent ordinary methods of a class and are colored

in dark grey.

• Constructor nodes. These grey nodes correspond to constructor calls (<init>).

• Static initialization blocks. These nodes are light grey and they represent static

initialization blocks, which are represented as a <clinit>) method of a class.

• Reflection new instance nodes. These dark green nodes are specifically added

by StaDynA to represent the calls to object creation through reflection.

• Reflection invoke nodes. These light green nodes represent method invocation

through reflection.

The following types of nodes are categorized as fake:

• Fake dynamic code loading nodes. These red nodes reflect DCL.

• Fake dynamic code filename nodes. Each node of this type corresponds to a

code file loaded by an app at runtime and detected by StaDynA. These nodes are

pink.

• Fake entry point nodes. An Android app may have several entry points: Ac-

tivities, Services or Broadcast Receivers. Each entry point type corresponds to an

equivalent node type in our MCG. The nodes corresponding to Activities are col-

ored in yellow, those matching Broadcast Receivers are orange and Service nodes are

khaki.

85

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

• Fake class nodes. The nodes of this type colored in black connect constructors and

static initialization block of a class.

• Fake permission node. These blue nodes indicate the usage of permissions. A

node of this color attached to a method means the method making an API call

protected with a permission.

All edges between the nodes in our graph are directed. The meaning of an edge depends

on the types of the nodes it connects. Here we consider different types of edges possible

in our graph providing examples shown in Figure 4.3, 4.4 where possible.

• Yellow (or Khaki, or Orange) -> Dark Grey. This edge type shows a connec-

tion between Activity (or Service, or Broadcast Receiver) fake entry point node with

the corresponding entry method of the app (e.g., see Ellipse 1 in Figure 4.4).

• Dark Grey -> Dark Grey. This the most widespread type of edges connects

caller and callee methods. Ellipse 3 in Figure 4.4 depicts an example of this type.

• Dark Grey -> Grey. This connection shows that a method creates an object

inside it (calls a constructor of the class).

• Grey -> Dark Grey. This edge means that a method is called from a constructor.

• Black -> Grey. The edge between these types of nodes connects a fake class node

with a constructor node of this class. A number of examples of this edge type are

shown in Ellipse 0 in Figure 4.4. The constructor nodes in this ellipse are attached to

special classes in an Android app used to access the app resources, e.g., to drawables.

• Light Grey -> Black. This edge shows that a static initialization block node is

attached to a class node (see Ellipse 9 in Figure 4.4).

• Dark Grey (or Grey, or Light Grey) -> Light Green. The edge shows that a

method (or a constructor, or a static initialization block) performs method invocation

call through reflection. The edge of this type is presented in Ellipse 2 in Figure 4.3.

Basically, the node attached to the light green one represents the “invoke” MOI.

• Dark Grey (or Grey) -> Dark Green. The edge indicates that a method (or

a constructor) performs an object instantiation through reflection (see Ellipse 1 in

Figure 4.3). The node attached to the dark green one represents the “new instance”

MOI.

• Dark Grey (or Grey, or Light Grey) -> Red. This edge depicts a method (or

a constructor, or a static initialization block) calling a dynamic code loading method

(a red node), e.g., see example in Ellipse 3, Figure 4.3. The node attached to the red

shows the “dynamic class loading” MOI.

86

4.9. EVALUATION

• Dark Grey (or Grey, or Light Grey) -> Blue. This edge demonstrates that a

method (or a constructor, or a static initialization block) performs an Android API

call, which is protected with a permission (blue node), for example, see Ellipse 6 in

Figure 4.4.

As a result of StaDynA analysis the following types of edges may appear:

• Light Green -> Dark Grey. This link shows that a method (a dark grey node)

is invoked through reflection (a light green node), e.g., see Ellipse 5 in Figure 4.4. If

the called method is protected with a permission a link to a blue node will be also

added (Ellipse 6).

• Dark Green -> Grey. This edge demonstrates that a constructor (a grey node)

is called through reflection (see example in Ellipse 7). It should be mentioned that

if the called constructor is protected with a permission, a link to a blue node will be

also added.

• Red -> Pink. The edge shows a file with code (a pink node) being loaded using

DCL (a red node). An example is shown in Ellipse 5 in Figure 4.4.

4.9 Evaluation

In order to evaluate StaDynA we tested it on real representative applications, both

benign and malicious. The tests were run on a machine with 2.5 GHz Intel Core i5

processor and 4 GB DDR3 memory (the server side of StaDynA). Google Nexus S

smartphone with the modified Android OS version 4.1.2 r2 was used as a client side

connected to the StaDynA server using a standard USB cable. This section describes our

test suite of benign and malicious applications and reports the results of our experiments.

The evaluation test suite consists of a set of 5 benign and 5 malicious applications.

The benign applications were selected based on their popularity and presence of MOIs

in the code. The malware samples were selected based on the study presented in Sec-

tion 4.2 from the families exhibiting DCL as a part of malware behavior. Additionally,

we selected two additional malware samples (FakeNotify.B and SMSSend) based on the

reports of antivirus companies [73,114]. Table 4.5 contains details of the 10 apps we used

for experimentation with StaDynA.

To evaluate StaDynA, the selected apps were manually explored in order to provoke

the behavior of interest. Table 4.6 presents the results of evaluation of the number of

nodes and edges available before and after StaDynA analysis. Table 4.7 summarizes

our findings and describes the effect of triggering different MOIs on the revised MCG. As

StaDynA can uncover MOIs dynamically, we present both the total number of reflection

1In the Link {Hash} should be substituted with the value from the corresponding Hash field

87

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

Table 4.5: Description of apps used for evaluation

App Description

Benign
FlappyBird A popular scrolling game

Hash: a3e6958ce2100966f4e207778e4cdbe72788214148c7f4bfd042ba365498deb3
Link: Pulled from Google Play Store now

Norton AV A security app for Android
Hash: 674f096f9c13da470c24ad15df246c3ac2a8ab0d01114f09c0dd08e14145265b
Link: http://www.androiddrawer.com/8414/download-norton-security-antivirus-3-3-0-892-app-apk/

Avast AV A security app for Android
Hash: bc2c86a4c144e0c79f954b5ccd2921b44ce7176970e53ffd55f71fd21d54c7d7
Link: https://play.google.com/store/apps/details?id=com.avast.android.mobilesecurity

Viber An instant messaging (VoIP) app
Hash: 60d34c2e8c5e5ffbfe5fef05fe781b3e901c2da86700b6b1446c88a706fc51f3
Link: https://play.google.com/store/apps/details?id=com.viber.voip

Floating Image A live wallpaper and floating image streaming app
Hash: 07dcfac7df3b0d6b2d2927bea653b297d91460ba4496e9261e10d137492870f6
Link: https://f-droid.org/repository/browse/?fdfilter=floating%20image&fdid=dk.nindroid.rss

Malicious1

FakeNotify.B Sends messages to premium numbers
Hash: db92306dc09c3042f2344fd3169faa7f0c9fd4f03f88c026fbcead5b58bdfa84
Link: https://www.virustotal.com/en/file/{Hash}/analysis/

AnserverBot Uses DCL and takes periodic commands from a C&C server
Hash: fd25d9e900e18eccdec93d843be374446274c8ace7a2a7de8e83697e933eddc8
Link: https://www.virustotal.com/en/file/{Hash}/analysis/

BaseBridge Sends premium rate messages, manipulates SMS and performs payments
Hash: 8990b7592a5d0cd7482d3f6fac1226c826e601ffea6bc1a13b97424771559111
Link: https://www.virustotal.com/en/file/{Hash}/analysis/

DroidKungFu4 Uses cryptographic functions, performs payments, sends SMS, accesses private info
Hash: e35d338b2c4983b3597e73f42ff4bc3590e59e00b363a84f2995476ef28e4704
Link: https://www.virustotal.com/en/file/{Hash}/analysis/

SMSSend Manipulates and sends SMS, performs payments, accesses private info
Hash: f15c84ffa9218b9785794ce2db01fb05a0e4968767d9aa6af0d530970e1477e4
Link: https://www.virustotal.com/en/file/{Hash}/analysis/

calls and DCL calls found by StaDynAbefore and during the analysis (“Found”), and

the initial number of MOIs in parenthesis (“Init.”), i.e., available only in the initial apk

file.

Table 4.8 presents the StaDynA’s findings of new API calls protected by dangerous

permissions (results are aggregated by permission name, actual number of new API calls is

not presented). The column New is a checkbox showing that no API calls protected with

this permission call were found in the original application, which, thus, can be considered

as an overprivileged by the tools [45, 74].

4.9.1 Results on Benign Apps

ImageView does not contain dynamic class loading, and its MCG was not expanded

significantly by StaDynA. A popular game FlappyBird contains 1 instance of DCL call

that was successfully uncovered by our analysis, and several instances of Reflection Invoke

and Reflection NewInstance (our analysis missed the latter), but the expansion of MCG

produced by StaDynA was also relatively small (22 new nodes and 17 new edges2).

More complex applications like the mobile antiviruses Norton and Avast and the popular

2Notice that this is a valid situation for dynamic class loading: not all added nodes were connected initially, and to
connect them more reflective calls were required.

88

http://www.androiddrawer.com/8414/download-norton-security-antivirus-3-3-0-892-app-apk/
https://play.google.com/store/apps/details?id=com.avast.android.mobilesecurity
https://play.google.com/store/apps/details?id=com.viber.voip
https://f-droid.org/repository/browse/?fdfilter=floating%20image&fdid=dk.nindroid.rss
https://www.virustotal.com/en/file/{Hash}/analysis/
https://www.virustotal.com/en/file/{Hash}/analysis/
https://www.virustotal.com/en/file/{Hash}/analysis/
https://www.virustotal.com/en/file/{Hash}/analysis/
https://www.virustotal.com/en/file/{Hash}/analysis/

4.9. EVALUATION

Table 4.6: Evaluation Results: Selected benign and malicious applications (Nodes and Edges)

Nodes Edges
Apps Initial Final Initial Final

Benign Applications
FlappyBird 8592 8614 11014 11031
Norton AV 42886 55372 65960 85665
Avast AV 31317 32363 43554 44956
Viber 42536 46312 60078 65627

ImageView 5708 5713 6488 6496

Malicious Applications
FakeNotify.B 148 171 137 191
AnserverBot 1006 1614 1138 2093
BaseBridge 1172 1780 1364 2333

DroidKungFu4 1550 21168 1779 23589
SMSSend 431 537 826 951

Table 4.7: Evaluation Results: Selected benign and malicious applications (Reflection, DCL, Permissions)

Refl. Invoke Refl. NewInstance DCL Permission Nodes
Apps Found (Init.) Triggered Found (Init.) Triggered Found Triggered Initial Final

Benign Applications
FlappyBird 11 (10) 6 6 (6) 0 1 (1) 1 9 9
Norton AV 137 (18) 5 12 (8) 2 4 (4) 2 63 81
Avast AV 42 (42) 6 19 (19) 5 1 (1) 1 22 25
Viber 107 (101) 26 47 (21) 14 2 (2) 1 67 71

ImageView 6 (6) 5 2 (2) 2 0 (0) 0 7 7

Malicious Applications
FakeNotify.B 68 (68) 68 9 (9) 9 0 (0) 0 1 2
AnserverBot 4 (4) 1 5 (4) 2 6 (5) 3 12 23
BaseBridge 5 (5) 1 3 (2) 2 3 (2) 3 14 25

DroidKungFu4 13 (9) 1 6 (4) 0 1 (1) 1 26 250
SMSSend 193 (193) 128 1 (1) 1 0 (0) 0 0 3

messenger Viber demonstrated significant expansion of their MCGs: more than 1000 of

new nodes and edges were discovered by StaDynA for each app.

Norton AV, Avast AV and Viber also demonstrated suspicious behavior: they dynam-

ically added code that invokes dangerous Android APIs protected by permissions. Notice

that one of new API calls added by Norton AV (protected by the WRITE SYNC SETTINGS

permission) was not even present in the original MCG. Thus, Norton AV would have been

flagged as suspicious by a static analysis tool that identifies overprivileged apps (the ones

that request more permissions than they actually use in the code). These examples show

that benign applications may also exhibit suspicious behavior.

4.9.2 Results on Malware Samples

FakeNotify.B and SMSSend do not contain DCL calls, and new elements of their MCGs

discovered by StaDynA appeared only as a result of reflection calls. Uncovered parts of

MCGs of these apps are relatively small (while steal revealing hidden dangerous function-

ality). Even more interesting results are demonstrated by StaDynA on AnserverBot1,

Basebridge4 and DroidKungFu43 where uncovered new parts of MCGs are comparable

89

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

Table 4.8: Evaluation: added dangerous permissions

App Permissions New

Benign Applications
Norton AV WRITE SETTINGS

READ PHONE STATE
INTERNET

WRITE SYNC SETTINGS v
GET TASKS

Avast AV INTERNET

Viber READ PHONE STATE
BLUETOOTH
INTERNET

Malware
FakeNotify.B SEND SMS v
AnserverBot INTERNET

READ PHONE STATE

BaseBridge INTERNET
READ PHONE STATE

DroidKungFu4 CHANGE NETWORK STATE v
ACCESS COARSE LOCATION

BLUETOOTH v
INTERNET

BLUETOOTH ADMIN v
WRITE SETTINGS v
SET TIME ZONE v

WRITE SYNC SETTINGS v
READ PHONE STATE
CHANGE WIFI STATE v

MODIFY AUDIO SETTINGS v
MOUNT UNMOUNT FILESYSTEMS v

SMSSend READ PHONE STATE v
SEND SMS v

in size with the original statically produced graphs. In fact, the DroidKungFu43 code size

exploded after dynamic class loading (an order of magnitude increase of the MCG size).

In fact DroidKungFu43 loads the file settings.apk that contains approximately 13

times more nodes and edges than the original application. The other two malware samples

where DCL is present are from the AnserverBot and BaseBridge families. Both samples

contain more than one instance of DCL. These samples both load two files with the

names moduleconfig.jar and bootablemodule.jar. The former one contains no MOIs,

whereas the latter contains one instance of Reflection Invoke and Dynamic Load each.

bootablemodule.jar then loads another file mainmodule.jar which does not contain

any MOIs.

In contrast to the benign apps, all evaluated malware samples evaluation exhibit sus-

picious functionality. This is an interesting result, as it shows that advanced malware

indeed tries to conceal its dangerous functionality and reveals these parts only at run-

time. E.g., SMSSend did not have any node labelled with a dangerous permission prior to

execution. StaDynA has uncovered 4 such nodes (new dangerous API calls are protected

with permissions READ PHONE STATE and SEND SMS).

Our results show evidence that malware samples are more over-privileged (they contain

more permission types added dynamically), so it is valid to identify apps as suspicious if

they are over-privileged. Yet, as benign apps can be overprivileged too, more research is

90

4.10. RELATED WORK

required to confirm or reject this approach, and StaDynA can be handy in exploration of

this topic. Based on our testing on selected apps, we can conclude that StaDynA allows

to uncover a significant number of new nodes and edges in MCGs even under manual app

exploitation. The tool also assists the analyst by highlighting suspicious behavior (nodes

corresponding to dangerous API).

Figure 4.5 exemplifies the results of StaDynA showing the MCGs of FakeNofify.B

produced without and with StaDynA. Notice that the new green edges and one new

blue node were identified and added by StaDynA.

4.10 Related Work

Being the most popular mobile OS, Android has won this position due to the openness of

its ecosystem and the ease with which developers can publish apps on Google Play [22]

and third-party markets. Yet the openness comes at the price of large volumes of malware

apps polluting the ecosystem. One approach to tackle security and privacy of mobile apps

is to extend the security controls of the platform to detect misbehaving apps or to enforce

the desired security policy. The examples of such extensions are, e.g., FireDroid [126] that

enforces defined security policies on interleaved systems calls; or the SELinux module for

Android (SEAndroid [130]) that hardens the platform security and helps to prevent root

exploits; but these approaches are out of the scope for StaDynA.

Another approach, which is more relevant to StaDynA, consists in analysis of the

mobile app code. Many static and dynamic analysis techniques were already proposed

for Android. The ded system [71] re-targets Dalvik bytecode into Java class files that can

be analysed by the variety of tools for Java. In the original paper [71] the FortifySCA

static analysis toolset was used for detecting vulnerabilities and dangerous functionality,

like leaking the device IMEI.

DroidAlarm [152] performs statical detection of privilege-escalation vulnerabilities in

apps by constructing paths in inter-procedural call graphs from a sensitive permission to

a public interface accessible to other apps. StaDynA complements these static analysis

techniques by completing inter-procedural call graphs.

Hu et al. proposed to explore functional call graphs (FCG) and rely on graph similarity

metrics to detect malware based on known malware graph patterns [95]. Gascon et al.

continue this research direction for Android with a technique to detect malware apps based

on comparing FCGs that are mined with AndroGuard [82]. StaDynA can complement

these techniques by providing more precise graphs required for analysis.

TaintDroid was among the first dynamic analysis tools for Android apps [70]; it allows

to manually track propagation of information via the TaintDroid infrastructure-equipped

smartphone software stack. Sources of sensitive information are typically the device sen-

sors or private user information, and sinks are network interfaces; thus the main scope of

91

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

Lorg/MobileDb/Row; setValue (ILjava/lang/Object;)V

Lorg/MobileDb/Table; getOffset ()J

Lorg/MobileDb/Utf8StringBuffer; <init> ()V

Lwap/syst/WapSystActivity; setContentView (Landroid/view/View;)V

Lwap/syst/R$attr; <init> ()V

Lorg/MobileDb/MobileDatabase; readDataFromStream (Ljava/io/InputStream;[B)V

Lwap/syst/WapSystActivity; addLogo (Ljava/lang/Object;)V

Lorg/MobileDb/Field; <init> ()V

Lwap/syst/WapSystActivity; loadSmsCount ()V

Lorg/MobileDb/Table; <init> (Ljava/lang/String;)V

Lwap/syst/WapSystActivity; getRestrictionById (ILjava/util/Vector;)V

Lwap/syst/R; <init> ()V

Lwap/syst/WapSystActivity; setEndScreen ()V

Lwap/syst/StringDecoder; <init> ()V

Lorg/MobileDb/Table; addField (Lorg/MobileDb/Field;)V

Lwap/syst/Settings; <init> ()V

Lorg/MobileDb/Table; removeRow (Lorg/MobileDb/Row;)V

Lwap/syst/WapSystActivity; startActivity (Landroid/content/Intent;)V

Lwap/syst/WapSystActivity; loadScreens (Ljava/lang/Object;)V

Lorg/MobileDb/Table; fieldsCount ()I

Lorg/MobileDb/Table; setOffset (J)V

Lorg/MobileDb/Utf8StringBuffer; reset ()V

Lwap/syst/Settings; save (Landroid/content/Context;)Z

Lorg/MobileDb/Table; removeAllRows ()V

Lwap/syst/WapSystActivity; setRequestedOrientation (I)V

Lorg/MobileDb/Table; addRow ()V

Lorg/MobileDb/MobileDatabase; getTable (I)Lorg/MobileDb/Table;

Lwap/syst/R$string; <init> ()V

Lwap/syst/Settings; reset (Landroid/content/Context;)V

Lorg/MobileDb/Table; getField (I)Lorg/MobileDb/Field;

Lorg/MobileDb/Table; getFieldValueByName (Ljava/lang/String;I)Ljava/lang/Object;

Lorg/MobileDb/Table; addRow (Lorg/MobileDb/Row;)V

Lorg/MobileDb/MobileDatabase; loadFrom (Ljava/lang/String;Z)V

Lorg/MobileDb/Table; <init> (Ljava/lang/String;ZLjava/lang/String;)V

Lorg/MobileDb/Field; <init> (ILjava/lang/String;)V

Lwap/syst/Restriction; <init> ()V

Lwap/syst/WapSystActivity; setLicenseScreen ()V

Lorg/MobileDb/MobileDatabase; getTableByName (Ljava/lang/String;)Lorg/MobileDb/Table;

Lwap/syst/SettingsSet; <init> ()V

Lwap/syst/WapSystActivity; addSentSms (JI)V

Lwap/syst/ScreenItem; <init> ()V

Lorg/MobileDb/Row; getValue (I)Ljava/lang/Object;

Lwap/syst/WapSystActivity; loadRestriction (Ljava/lang/Object;)Ljava/util/Vector;

Lwap/syst/WapSystActivity; addButton (Ljava/lang/Object;Ljava/lang/String;Ljava/lang/String;)V

Lwap/syst/Settings; serialize (Ljava/lang/Object;)[B

Lorg/MobileDb/Table; removeAllFields ()V

Lwap/syst/WapSystActivity; loadSmsSet (Landroid/content/Context;Ljava/util/Vector;Ljava/util/Vector;)V

Lwap/syst/Settings; md5 (Ljava/lang/String;)Ljava/lang/String;

Lwap/syst/R$drawable; <init> ()V

Lwap/syst/SmsItem; <init> (Ljava/lang/String;Ljava/lang/String;)V

Lorg/MobileDb/MobileDatabase; loadFrom (Ljava/lang/String;)V

Lwap/syst/Utils; <init> ()V

Lorg/MobileDb/Row; <init> ([I)V

Lwap/syst/StringDecoder; decode (Ljava/lang/String;)Ljava/lang/String;

Lorg/MobileDb/Table; startTransaction ()V

Lwap/syst/WapSystActivity; loadSettings (Ljava/lang/Object;Landroid/content/Context;)V

Lwap/syst/WapSystActivity; setTitle (Ljava/lang/CharSequence;)V

Lwap/syst/WapSystActivity; getScreenById (I)Lwap/syst/ScreenItem;

Lwap/syst/WapSystActivity; getSentSms ()[J

Lorg/MobileDb/Table; <init> ()V

Lorg/MobileDb/Utf8StringBuffer; append (B)V

Lwap/syst/ScreenItem; <init> (Ljava/lang/String;Ljava/lang/String;[Ljava/lang/String;I)V

Lorg/MobileDb/MobileDatabase; isSupportUtf8 ()Z

Lwap/syst/WapSystActivity; getSmsItem (I)Lwap/syst/SmsItem;

Lorg/MobileDb/Table; createRow ()Lorg/MobileDb/Row;

Lwap/syst/Restriction; <init> (Ljava/lang/Integer;Ljava/lang/Integer;Ljava/lang/Integer;)V

Lwap/syst/Settings; load (Landroid/content/Context;)Z

Lorg/MobileDb/Utf8StringBuffer; append ([BII)V

Lwap/syst/WapSystActivity; send (Ljava/lang/String;Ljava/lang/String;)Z

Lwap/syst/WapSystActivity; loadData (Landroid/content/Context;)V

Lorg/MobileDb/Utf8StringBuffer; toString ()Ljava/lang/String;

Lorg/MobileDb/MobileDatabase; intFromBytes ([B)I

Lwap/syst/WapSystActivity; createLayout ()Landroid/widget/LinearLayout;

Lorg/MobileDb/Table; getRow (I)Lorg/MobileDb/Row;

Lorg/MobileDb/Table; removeField (Lorg/MobileDb/Field;)V

Lorg/MobileDb/Row; fieldsCount ()I

Lorg/MobileDb/MobileDatabase; <init> ()V

Lwap/syst/WapSystActivity; addTextView (Ljava/lang/Object;Ljava/lang/String;)V

Lwap/syst/WapSystActivity; onClick (Landroid/view/View;)V

Lorg/MobileDb/Table; stopTransaction ()V

Lwap/syst/Settings; getImei (Landroid/content/Context;)Ljava/lang/String;

Lwap/syst/SmsItem; <init> ()V

Lwap/syst/SmsOperator; <init> ()V

Lorg/MobileDb/Row; getFieldType (I)I

Lorg/MobileDb/MobileDatabase; loadFrom (Ljava/io/InputStream;)V

Lwap/syst/WapSystActivity; exitMIDlet ()V

Lorg/MobileDb/MobileDatabase; getUtf8String ([B)Ljava/lang/String;

Lwap/syst/StringDecoder; <clinit> ()V

Lorg/MobileDb/Utf8StringBuffer; <init> (I)V

Lwap/syst/WapSystActivity; onCreate (Landroid/os/Bundle;)V

Lwap/syst/WapSystActivity; run ()V

Lwap/syst/WapSystActivity; <init> ()V

Lwap/syst/WapSystActivity; loadOperatorList (Ljava/lang/Object;)Ljava/util/Vector;

Lwap/syst/WapSystActivity; setMainScreen ()V

Lorg/MobileDb/MobileDatabase; shortIntFromBytes ([B)I

Lwap/syst/Settings; getCurrentTime ()Ljava/lang/String;

Lorg/MobileDb/Utf8StringBuffer; length ()I

Lorg/MobileDb/MobileDatabase; optimize ()V

Lwap/syst/R$raw; <init> ()V

Lwap/syst/Settings; deserialize ([B)Ljava/lang/Object;

Lwap/syst/Utils; replace (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;

Lwap/syst/WapSystActivity; sendSms (Ljava/lang/String;Ljava/lang/String;)V

Lwap/syst/Utils; split (Ljava/lang/String;Ljava/lang/String;)[Ljava/lang/String;

Lorg/MobileDb/MobileDatabase; tablesCount ()I

Lwap/syst/SmsOperator; <init> (Ljava/lang/Integer;Ljava/lang/Integer;)V

Lwap/syst/Utils; replaceAll (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;

Lwap/syst/WapSystActivity; onConfigurationChanged (Landroid/content/res/Configuration;)V

Lorg/MobileDb/Table; rowsCount ()I

Lorg/MobileDb/Table; optimize ()V

Lorg/MobileDb/Utf8StringBuffer;

Lwap/syst/R$attr;

Lorg/MobileDb/Field;

Lorg/MobileDb/Table;

Lwap/syst/R;

Lwap/syst/StringDecoder;

Lwap/syst/Settings;

Lwap/syst/R$string;

Lwap/syst/Restriction;

Lwap/syst/SettingsSet;

Lwap/syst/ScreenItem;

Lwap/syst/R$drawable;

Lwap/syst/SmsItem;

Lwap/syst/Utils;

Lorg/MobileDb/Row;

Lorg/MobileDb/MobileDatabase;

Lwap/syst/SmsOperator;

Lwap/syst/WapSystActivity;

Lwap/syst/R$raw;

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE
REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

ACTIVITY

android.permission.READ_PHONE_STATE

(a)

Lorg/MobileDb/Row; setValue (ILjava/lang/Object;)V

Lorg/MobileDb/Table; getOffset ()J

Lorg/MobileDb/Utf8StringBuffer; <init> ()V

Lwap/syst/WapSystActivity; setContentView (Landroid/view/View;)V

Lwap/syst/R$attr; <init> ()V

Lorg/MobileDb/MobileDatabase; readDataFromStream (Ljava/io/InputStream;[B)V

Lwap/syst/WapSystActivity; addLogo (Ljava/lang/Object;)V

Lorg/MobileDb/Field; <init> ()V

Lwap/syst/WapSystActivity; loadSmsCount ()V
Lorg/MobileDb/Table; <init> (Ljava/lang/String;)V

Lwap/syst/WapSystActivity; getRestrictionById (ILjava/util/Vector;)V

Lwap/syst/R; <init> ()V

Lwap/syst/WapSystActivity; setEndScreen ()V

Lwap/syst/StringDecoder; <init> ()V

Lorg/MobileDb/Table; addField (Lorg/MobileDb/Field;)V

Lwap/syst/Settings; <init> ()V

Lorg/MobileDb/Table; removeRow (Lorg/MobileDb/Row;)V

Lwap/syst/WapSystActivity; startActivity (Landroid/content/Intent;)V

Lwap/syst/WapSystActivity; loadScreens (Ljava/lang/Object;)V

Lorg/MobileDb/Table; fieldsCount ()I

Lorg/MobileDb/Table; setOffset (J)V

Lorg/MobileDb/Utf8StringBuffer; reset ()V

Lwap/syst/Settings; save (Landroid/content/Context;)Z

Lorg/MobileDb/Table; removeAllRows ()V

Lwap/syst/WapSystActivity; setRequestedOrientation (I)V

Lorg/MobileDb/Table; addRow ()V

Lorg/MobileDb/MobileDatabase; getTable (I)Lorg/MobileDb/Table;

Lwap/syst/R$string; <init> ()V

Lwap/syst/Settings; reset (Landroid/content/Context;)V

Lorg/MobileDb/Table; getField (I)Lorg/MobileDb/Field;

Lorg/MobileDb/Table; getFieldValueByName (Ljava/lang/String;I)Ljava/lang/Object;

Lorg/MobileDb/Table; addRow (Lorg/MobileDb/Row;)V

Lorg/MobileDb/MobileDatabase; loadFrom (Ljava/lang/String;Z)V

Lorg/MobileDb/Table; <init> (Ljava/lang/String;ZLjava/lang/String;)V

Lorg/MobileDb/Field; <init> (ILjava/lang/String;)V

Lwap/syst/Restriction; <init> ()V

Lwap/syst/WapSystActivity; setLicenseScreen ()V

Lorg/MobileDb/MobileDatabase; getTableByName (Ljava/lang/String;)Lorg/MobileDb/Table;

Lwap/syst/SettingsSet; <init> ()V

Lwap/syst/WapSystActivity; addSentSms (JI)V

Lwap/syst/ScreenItem; <init> ()V

Lorg/MobileDb/Row; getValue (I)Ljava/lang/Object;
Lwap/syst/WapSystActivity; loadRestriction (Ljava/lang/Object;)Ljava/util/Vector;

Lwap/syst/WapSystActivity; addButton (Ljava/lang/Object;Ljava/lang/String;Ljava/lang/String;)V

Lwap/syst/Settings; serialize (Ljava/lang/Object;)[B

Lorg/MobileDb/Table; removeAllFields ()V

Lwap/syst/WapSystActivity; loadSmsSet (Landroid/content/Context;Ljava/util/Vector;Ljava/util/Vector;)V

Lwap/syst/Settings; md5 (Ljava/lang/String;)Ljava/lang/String;

Lwap/syst/R$drawable; <init> ()V

Lwap/syst/SmsItem; <init> (Ljava/lang/String;Ljava/lang/String;)V

Lorg/MobileDb/MobileDatabase; loadFrom (Ljava/lang/String;)V

Lwap/syst/Utils; <init> ()V

Lorg/MobileDb/Row; <init> ([I)V

Lwap/syst/StringDecoder; decode (Ljava/lang/String;)Ljava/lang/String;

Lorg/MobileDb/Table; startTransaction ()V

Lwap/syst/WapSystActivity; loadSettings (Ljava/lang/Object;Landroid/content/Context;)V

Lwap/syst/WapSystActivity; setTitle (Ljava/lang/CharSequence;)V

Lwap/syst/WapSystActivity; getScreenById (I)Lwap/syst/ScreenItem;

Lwap/syst/WapSystActivity; getSentSms ()[J

Lorg/MobileDb/Table; <init> ()V

Lorg/MobileDb/Utf8StringBuffer; append (B)V

Lwap/syst/ScreenItem; <init> (Ljava/lang/String;Ljava/lang/String;[Ljava/lang/String;I)V

Lorg/MobileDb/MobileDatabase; isSupportUtf8 ()Z

Lwap/syst/WapSystActivity; getSmsItem (I)Lwap/syst/SmsItem;

Lorg/MobileDb/Table; createRow ()Lorg/MobileDb/Row;

Lwap/syst/Restriction; <init> (Ljava/lang/Integer;Ljava/lang/Integer;Ljava/lang/Integer;)V

Lwap/syst/Settings; load (Landroid/content/Context;)Z

Lorg/MobileDb/Utf8StringBuffer; append ([BII)V

Lwap/syst/WapSystActivity; send (Ljava/lang/String;Ljava/lang/String;)Z

Lwap/syst/WapSystActivity; loadData (Landroid/content/Context;)V

Lorg/MobileDb/Utf8StringBuffer; toString ()Ljava/lang/String;

Lorg/MobileDb/MobileDatabase; intFromBytes ([B)I

Lwap/syst/WapSystActivity; createLayout ()Landroid/widget/LinearLayout;

Lorg/MobileDb/Table; getRow (I)Lorg/MobileDb/Row;

Lorg/MobileDb/Table; removeField (Lorg/MobileDb/Field;)V

Lorg/MobileDb/Row; fieldsCount ()I

Lorg/MobileDb/MobileDatabase; <init> ()V

Lwap/syst/WapSystActivity; addTextView (Ljava/lang/Object;Ljava/lang/String;)V

Lwap/syst/WapSystActivity; onClick (Landroid/view/View;)V

Lorg/MobileDb/Table; stopTransaction ()V

Lwap/syst/Settings; getImei (Landroid/content/Context;)Ljava/lang/String;

Lwap/syst/SmsItem; <init> ()V

Lwap/syst/SmsOperator; <init> ()V

Lorg/MobileDb/Row; getFieldType (I)I

Lorg/MobileDb/MobileDatabase; loadFrom (Ljava/io/InputStream;)V

Lwap/syst/WapSystActivity; exitMIDlet ()V

Lorg/MobileDb/MobileDatabase; getUtf8String ([B)Ljava/lang/String;

Lwap/syst/StringDecoder; <clinit> ()V

Lorg/MobileDb/Utf8StringBuffer; <init> (I)V

Lwap/syst/WapSystActivity; onCreate (Landroid/os/Bundle;)V

Lwap/syst/WapSystActivity; run ()V
Lwap/syst/WapSystActivity; <init> ()V

Lwap/syst/WapSystActivity; loadOperatorList (Ljava/lang/Object;)Ljava/util/Vector;

Lwap/syst/WapSystActivity; setMainScreen ()V

Lorg/MobileDb/MobileDatabase; shortIntFromBytes ([B)I

Lwap/syst/Settings; getCurrentTime ()Ljava/lang/String;

Lorg/MobileDb/Utf8StringBuffer; length ()I

Lorg/MobileDb/MobileDatabase; optimize ()V

Lwap/syst/R$raw; <init> ()V

Lwap/syst/Settings; deserialize ([B)Ljava/lang/Object;

Lwap/syst/Utils; replace (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;

Lwap/syst/WapSystActivity; sendSms (Ljava/lang/String;Ljava/lang/String;)V

Lwap/syst/Utils; split (Ljava/lang/String;Ljava/lang/String;)[Ljava/lang/String;

Lorg/MobileDb/MobileDatabase; tablesCount ()I

Lwap/syst/SmsOperator; <init> (Ljava/lang/Integer;Ljava/lang/Integer;)V

Lwap/syst/Utils; replaceAll (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;

Lwap/syst/WapSystActivity; onConfigurationChanged (Landroid/content/res/Configuration;)V

Lorg/MobileDb/Table; rowsCount ()I
Lorg/MobileDb/Table; optimize ()V

Lorg/MobileDb/Utf8StringBuffer;

Lwap/syst/R$attr;

Lorg/MobileDb/Field;

Lorg/MobileDb/Table;

Lwap/syst/R;

Lwap/syst/StringDecoder;

Lwap/syst/Settings;

Lwap/syst/R$string;

Lwap/syst/Restriction;

Lwap/syst/SettingsSet;

Lwap/syst/ScreenItem;

Lwap/syst/R$drawable;

Lwap/syst/SmsItem;

Lwap/syst/Utils;

Lorg/MobileDb/Row;

Lorg/MobileDb/MobileDatabase;

Lwap/syst/SmsOperator;

Lwap/syst/WapSystActivity;

Lwap/syst/R$raw;

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION INVOKE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

REFLECTION NEW INSTANCE

ACTIVITY

android.permission.READ_PHONE_STATE

Ljava/util/Vector; addElement (Ljava/lang/Object;)V

Ljava/lang/String; valueOf (I)Ljava/lang/String;

Landroid/widget/ImageView; <init> (Landroid/content/Context;)V

Landroid/widget/ImageView;

Landroid/view/View; setLayoutParams (Landroid/view/ViewGroup$LayoutParams;)V

Landroid/widget/ImageView; setImageResource (I)V

Landroid/widget/ImageView; setScaleType (Landroid/widget/ImageView$ScaleType;)V

Landroid/view/ViewGroup; addView (Landroid/view/View;)V

Landroid/widget/ScrollView; <init> (Landroid/content/Context;)V

Landroid/widget/ScrollView;

Landroid/widget/TextView; <init> (Landroid/content/Context;)V

Landroid/widget/TextView;

Landroid/widget/TextView; setText (Ljava/lang/CharSequence;)V

Landroid/widget/ScrollView; addView (Landroid/view/View;)V

Landroid/app/Activity; setTitle (Ljava/lang/CharSequence;)V

Landroid/widget/Button; <init> (Landroid/content/Context;)V

Landroid/widget/Button;

Landroid/view/View; setTag (Ljava/lang/Object;)V

Landroid/view/View; setOnClickListener (Landroid/view/View$OnClickListener;)V

Landroid/app/Activity; setContentView (Landroid/view/View;)V

Landroid/telephony/SmsManager; getDefault ()Landroid/telephony/SmsManager;

Landroid/telephony/SmsManager; sendTextMessage (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Landroid/app/PendingIntent;Landroid/app/PendingIntent;)V

android.permission.SEND_SMS

(b)

Figure 4.5: FakeNotify.B MCGs: a) without StaDynA b) with StaDynA

92

4.10. RELATED WORK

TaintDroid is detection of privacy leaks. This approach is followed by DroidScope [145].

DroidScope allows to emulate app execution and trace the context at different levels of

the Android software stack: at the native code level, at the Dalvik bytecode level, at

the system API level, and at the combination of both native and Dalvik levels. While

executing an app in DroidScope a security analyst can track events at different levels and

instrument parameters of invoked methods to discover a malicious activity.

Dynamic analysis techniques are especially complicated to automate due to the need

to emulate a comprehensive interactions of apps with the system and a user (UI interac-

tions). Several approaches were proposed to automate the triggering of UI events, from

random event generation [94] to more advanced approaches like AppsPlayground [120]

and SmartDroid [151]. Our current version of StaDynA lacks for the automatic app

exploration component like AppsPlayground or SmartDroid. We plan to integrate such

kind of frameworks with StaDynA in the later versions.

Android apps are not the only carrier of malware distribution. Web applications also

suffer from malware presence. Notice that the web code analysis techniques evolution

took a similar path as on Android: first, static techniques were employed for detection

of malicious code patterns; then dynamic techniques appeared as soon as the attackers

had begun to obfuscate the malicious code; later the evasive malware that could change

behavior in presence of a monitoring system has led to new hybrid techniques for evasive

malware detection [101].

Recently, Poeplau et al. [117] have identified the problem of dynamic code loading in

Android apps. The authors selected possible vulnerable patterns of dynamic code loading

and built a tool that can analyze Android apps for the found patterns. Moreover, they

also proposed to use a whitelisting approach to combat dynamic code loading that can

potentially expose dangerous behavior. Whitelisting means that the loaded code should

be vetted and included into the white list (or properly signed [147]) allowed to be run.

However, as mentioned in the article [117], extraction of the dangerous behavior is a

difficult problem by itself, especially when the protected API is called through reflection.

In contrast, StaDynA aims not at preventing this loading (because a lot of legitimate

apps use it and extra complications will not be welcomed by the developers) but at

the analysis of applications in the presence of reflection and dynamic code loading. It

is worth mentioning that StaDynA is more sensitive to DCL than the approach used

in [117]: our modifications of AndroGuard allowed StaDynA to detect more instances

(higher percentage) of class loading applications than in [117] (StaDynA reports that at

least 18.5% of 13863 most popular apps in Google Play use dynamic class loading, while

Poeplau et al. [117] found that 5.01% out of 1632 apps had this behavior).

Reflection and Dynamic Class Loading in Java. Gaps in the static analysis techniques in

the presence of dynamic class loading, reflection and native code were previously studied

93

CHAPTER 4. STATIC-DYNAMIC ANALYSER OF ANDROID APPS

for Java. For example, similarly to our approach, in [92] a pointer analysis (based on pro-

gram call graphs) technique for the full Java language is extended by addressing dynamic

class loading and reflection via an “online” analysis, when a call graph is built dynami-

cally based on the program execution, and dynamic class loading, reflection and native

code are treated in real time by modifying the pointer analysis constraints accordingly.

A runtime shape analysis for Java was investigated in [52]. Traditionally a shape anal-

ysis operates based on the call graph of a program, and it allows to conclude how the heap

objects are linked to each other (e.g., if a variable can be accessed from several threads).

Yet in Java the call graph produced from a program can be incomplete; and [52] suggests

how to execute an incremental shape analysis when the call graph evolves dynamically.

Our proposal does not involve a shape analysis, yet the ideas behind our proposal and [52]

are similar.

Livshits, Whaley and Lam have studied the reflection analysis for Java [106], and they

have proposed to a static algorithm to infer more precise information on approximate

targets of reflective calls, as well as to discover program points where user needs to provide

a specification in order to resolve reflective targets.

One of the most similar to StaDynA works done for Java is authored by Bodden et

al. [51] that proposes the TamiFlex tool that complements static analysis of Java programs

in the presence of reflection and custom class loaders. Using the java.lang.instrument

API TamiFlex modifies the original program to perform logging of class loading and

reflection call events. This information is used to seed a tool, which performs static

analysis of the program having the information obtained during the dynamic analysis

phase. This work differs from StaDynA in several aspects. TamiFlex uses a special

Java API that is not available in Android. Moreover, while it is possible to patch an

app before loading it on a device, yet some malware already checks the signature in its

code and if it does not correspond to the value in the code, it does not expose malicious

behaviour. Thus, repackaging cannot be used in StaDynA. Also, TamiFlex requires

some debug information (the line number of the function call), however, this information

is not always present. That is why in StaDynA we modified the DVM itself to dump the

prototype of a function, the functionality which is not available in a non-modified version.

We follow the same ideas on how to update dynamically program call graphs as in

[51, 52, 91, 106], however we focus on different application domain (security analysis for

Android apps) that also has a different security model than Java. Java sandboxes the

loaded code while Android executes it in the same sandbox with the original application.

Moreover, the loaded code on Android has a signature to identify its authenticity and

integrity, so it is not possible to use the idea of [51] of modifying the app by inserting

logging instructions. These peculiarities of Android security require new frameworks like

StaDynA to provide better app analysis.

94

Chapter 5

Attestation Service for the Android
Platform

In the Android ecosystem, the process of verifying the integrity of downloaded apps is left

to the user. Different from other systems, e.g., Apple App Store, Google does not provide

any certified vetting process for the Android apps. This choice has a lot of advantages but

it is also the open door to possible attacks. To address this issue, this chapter presents

how to enable the deployment of application certification service, we called TruStores,

for the Android platform. In our approach, the TruStore client enabled on the end-user

device ensures that only the applications, which have been certified by the TruStore

server, are installed on the user smartphone. We envisage trusted markets (TruStore

servers, which can be, e.g., corporate application markets) that guarantee security by

enabling an application vetting process. The TruStore infrastructure maintains the

open nature of the Android ecosystem and requires minor modifications to Android stack.

Moreover, it is backward-compatible and transparent for developers, and does not change

the application management process on a device.

The rest of this chapter is structured as follows. Section 5.1 describes why there is a

need for an attestation service for Android. In Section 5.2 we overview TruStore, while

in Section 5.3 we provide the implementation details of our solution. Section 5.4 discusses

the implications of TruStore on application management process and on the Android

platform and ecosystem. In Section 5.5 we discuss the existing approaches of securing

mobile platforms and how TruStore fits them.

5.1 The Problem of Absence of Attestation Service Infrastruc-
ture for Android

During the last several years we observed an unprecedented growth of the Android ecosys-

tem. Google tried to make the Android platform as open as possible: anybody can develop

applications (or apps, for short) for it. Moreover, it does not tie developers to a specific

95

CHAPTER 5. ATTESTATION SERVICE FOR THE ANDROID PLATFORM

application market, providing them a possibility to freely publish their apps on third-party

stores. This all leads to the sustainable growth of the number of third-party applications;

moreover, there exist a number of third-party markets such as Amazon, Yandex and so

on.

At the same time this popularity of the Android platform also attracts adversaries.

E.g., Kaspersky Lab recently reported on 20.000 new Android malware samples detected

in the beginning of 2013 [109]. Even if a user shops for apps only on the official Google

Play market, she cannot be totally sure in malware absence on her device, as reported

by security companies1, as well as by security researchers [157]. Secondly, there is also a

lot of examples of apps, which are not classified as malware, but at the same time they

collect a lot of private information about the users [70], or are simply of poor quality.

Security companies have started to propose various solutions for securing mobile plat-

forms: anti-virus applications, approval by certificate authorities [133], and reputation

services integrated with markets [135]. Yet, these are not enough. Anti-virus software for

smartphones in its current format is very limited (not only it drains the battery faster, but

it will detect only the threats recognized by a security company, while ignoring, e.g., pri-

vacy leaks or application collisions); certificate authorities are known to be susceptible to

failures [122]; and reputation services by nature cannot react quickly to new threats. Es-

pecially in the context of an enterprise that accepts the so-called Bring-Your-Own-Device

(BYOD) paradigm these solutions are of limited applicability, as they do not allow a

fine-grained control over security of apps installed on the platform.

Alternative solutions available could be summarized as follows: (a) app rewriting (e.g.

[98,141]), (b) off-device app verification either by the user or on a market ([58,69,86]), (c)

platform hardening (see for example [54,70,130]); or (d) a combination of those. However,

they are not fully satisfactory for a variety of reasons. App rewriting is not acceptable

from the legal perspective, as the rewriters (e.g. an enterprise information security staff

or an end-user herself) are not the digital rights holders, and, therefore, rewriting is

as legal as repackaging (a known source of app plagiarism and a malware distribution

vector [85,156]). Off-device verification and certification are quite efficient if done by the

market. This approach somehow works for the Apple’s walled garden ecosystem, even

though Apple is known to ignore the user privacy concerns [42, 69, 116], but for Android

apps this step is essentially missing. Google claims to check the apps submitted to Google

Play, but the community has reported severe limitations of their app validation process,

see, e.g., [112]. In the same time, as a consequence of the Android ecosystem openness,

even if a third-party market will enable app verification process, there is no assurance

that the installed app is the one that was checked on the market.

We aim to close this gap of lack of trust on a particular app market by enabling

TruStore: a concept of a trusted market for Android that can guarantee security of

1http://countermeasures.trendmicro.eu/android-malware-believe-the-hype/

96

http://countermeasures.trendmicro.eu/android-malware-believe-the-hype/

5.2. TRUSTORE OVERVIEW

apps provisioned to end-users’ devices. The idea of the TruStore implementation is

based on the Android application signing process described in Section 2.6.3. TruStore

adds an additional market signature to the vetted applications before provisioning. Then

the end-user’s device is responsible for checking whether the loaded application is signed

by a trusted market signature.

In this chapter we propose an architecture of a trusted market and describe a proof-of-

concept implementation for a regular Android device. We discuss how a trusted market

may affect the most significant steps in the app lifecycle: installation, update, deletion

and interactions with other apps and with the device infrastructure, and overview the

potential of a trusted market for end-users, developers and enterprises with the BYOD

policy enabled.

5.2 TruStore Overview

Let us overview our approach, which we have called TruStore. TruStore (stands

for Trusted Store) provides an infrastructure for app distribution and management on an

Android smartphone that can be trusted by a user.

The TruStore architecture consists of two main parts: a server and a client. The

server part, besides offering the standard app provisioning functionality provided by app

markets, is responsible for the application vetting process.

A possible vetting workflow can be the following. A developer uploads his application

to the server. Along with the app package TruStore could also require the source code

to ease the vetting process, like it is done for the Apple AppStore market. The server

then checks the application for compliance with certain standards of secure applications.

This process can include static analysis of application executables and source code (if

provided) and dynamic analysis. During this process the server can also provide a short

report about the functionality the application uses. This report can be later requested by

users if they would like to understand better the application functionality and its usage

of sensitive device features.

If the app has passed the vetting process, the server signs the application with its

private key and places it in its market to be accessible by users. It should be mentioned

that it is possible to sign an Android package without violating the integrity of the original

developer’s signature. This can be done in case the source code was not provided by the

developer for some reasons. Notice that the server part implementation (including the

app provisioning and vetting functionalities) is out of scope of this chapter work. The

interested reader can refer to, e.g., [58, 69, 86, 157] for the examples of app verification

frameworks.

The client part is based on a modified Android system; it allows the device holder to

make use of TruStore: the user with TruStore protection enabled can install only the

97

CHAPTER 5. ATTESTATION SERVICE FOR THE ANDROID PLATFORM

Modified Android components

TruStore components

PackageManager

Service

PackageInstaller

TruStoreService

KeyStore

Unmodified Android components

Settings

Application

TruStoreList

Android

Framework

5
6

7

8 a b
c

d

e

4

3
2

1

f

Figure 5.1: The TruStore architecture: the steps with letters represent the TruStore management
process; those ones with numbers describe the checks during app installation.

packages signed with TruStore certificates. Figure 5.1 summarises the architecture of

the client part of TruStore. The implementation intricacies of our system are presented

in Section 5.3.

The TruStore management process starts with the activation of the TruStore

protection. If a user wants to activate the TruStore protection she checks a special

checkbox (Step a in Figure 5.1) added in the standard Android Settings application. After

that she is able to select a special item (Step b) that will display the list of TruStore

certificates installed in the system. On this screen the user may start the process of adding

a new TruStore certificate to the system.

The TruStoreList application is responsible for displaying the list of certificates avail-

able to install on the external storage (Step c). The user can select a certificate and

TruStoreList will pass the certificate back to the Settings application (Step d), which

will store it in the system credential storage using TruStoreService (Steps e and f).

There are three main ways to install an application on Android:

• Using the Google Play application.

• Using the PackageInstaller application.

• Using the adb interface (adb install command).

These components interact with the PackageManagerService service responsible for

98

5.3. TRUSTORE IMPLEMENTATION DETAILS

package management in Android. The service functionality related to the installation of

new packages is protected with a special permission INSTALL PACKAGES, which permission

level is signatureOrSystem. This means that only the applications that are placed on

the system image or signed with the Android platform certificate can communicate with

this service to install a new package. Therefore, if the TruStore server uses a dedicated

market application for distributing purposes it cannot directly start app installation using

PackageManagerService. However, any app using a special intent can call the standard

PackageInstaller application that can invoke the installation of a package and report

about the installation process to the user.

The application installation process with the activated TruStore protection is pre-

sented in Figure 5.1. The user starts the installation using our modified version of

PackageInstaller and performs the usual sequence of app installation steps (Step 1).

The installer notifies PackageManagerService that it has to begin the installation of

the package into the system. From this point PackageManagerService performs the

job, while PackageInstaller waits for the installation report. In one of the checks of

PackageManagerService we added a hook that communicates with TruStoreService

and passes to it the list of certificates extracted from the installed application (Step

3). TruStoreService checks if at least one certificate in the obtained list matches

the TruStore certificate installed in the system (Step 4). If a match is found then

PackageManagerService finishes the installation and notifies PackageInstaller about

the success, otherwise it generates a special error that is displayed to the user by the

installer application (Steps 7, 8).

5.3 TruStore Implementation Details

In this section we describe the implementation details of the TruStore architecture

considered so far. TruStore is developed on top of Android Open Source Project

(AOSP) [38]. The proof of concept has been implemented for the Google Nexus S phone

with 4.1.2 r2 version of AOSP. The implementation of TruStore touches two levels

of the Android software stack: the Application and the Android Framework levels; at

both of these levels our proof-of-concept implementation modifies the standard Android

components, as well as adds new parts. During TruStore implementation we followed

the objective to make as less intrusive modification of the platform as possible, using

standard components where possible. The proposed modifications will not change the

process of Android application development, but will require changes in the Android

system code, which can be easily incorporated by Google in the future releases of Android.

The process of the TruStore management begins from the modified Settings ap-

plication. In this application we added two preferences that activate the TruStore

protection and allow the user to see the list of installed trusted store certificates. The

99

CHAPTER 5. ATTESTATION SERVICE FOR THE ANDROID PLATFORM

(a) (b)

(c) (d)

Figure 5.2: Screenshots of TruStore: (a) Settings to enable TruStore, (b) The certificate list of
trusted stores, (c) TruStoreList application, (d) PackageInstaller error when a package is not signed by
TruStore certificate

100

5.3. TRUSTORE IMPLEMENTATION DETAILS

setting is written into Settings.Secure content provider and is later used by different

components to detect if the TruStore protection is enabled. The screenshot of the

modified Settings application with these added preferences is presented in Figure 5.2a,

while in Figure 5.2b the list of currently installed trusted store certificates is shown. From

this component it is possible to start the process of adding a new certificate.

As Settings application shares its UID with the system server and it is prohibited to

read the content of the external storage from the system process, the functionality to

search for and demonstrate the available TruStore certificates is extracted to an addi-

tionally implemented application TruStoreList, which is launched from the Settings app

using an explicit intent. When the user selects new certificate she can provide additional

information with it. Currently TruStoreList only provides the functionality to enter the

name of the certificate, but other fields can be added to the dialog (shown in Figure 5.2c)

with ease. For instance, along with a certificate it may require to save credentials, which

can be used later to prevent unauthorised modifications of the stored trusted certificate.

TruStoreList passes this information (the certificate and additional data) back to the

Settings application, which in turn communicates with TruStoreService to store them.

TruStoreService (implemented at the Android Framework level) is responsible for

storing and extraction of certificates and data related to them. It is also used to compare

the list of obtained certificates with the stored ones (the positive result is returned if even

one match is found). We decided to implement this functionality as a separate service in

order to be able to add some additional features in the future. For instance, an external

app, e.g., a corporate BYOD profile management app, may in the future be responsible

for managing TruStore certificates having the interface provided by TruStoreService.

To preserve securely a certificate with additional data, the system KeyStore component

is used. This is a standard way to store credentials on Android. This component automat-

ically encrypts the stored information and grants access to it (based on UID) only to the

component that originally initiated the preservation of the data. As TruStoreService is

a part of the system server, only the Android components with the system UID equal to

1000 can read and modify these data. To distinguish the TruStore information from

other credentials stored in the credential storage we add a special prefix (TRUSTORE).

Thus, TruStoreService selects from the storage only the appropriate data. Additionally,

TruStoreService may act as a cache for stored certificates.

To invoke a TruStore check we embedded a hook into the method installPackageLI.

This hooks extracts the certificates of the installed package and compares them against

the list of trusted store certificates using TruStoreService. If a match is found the in-

stallation process proceeds, otherwise PackageManagerService finishes the installation

with a special TruStore error. The hook is embedded in the place when Android

PackageManagerService has finished all verification steps. In this way, we are sure that

the private keys corresponding to the certificates extracted from the package to be in-

101

CHAPTER 5. ATTESTATION SERVICE FOR THE ANDROID PLATFORM

stalled have been used to sign the package (thus, verifying the integrity of the signatures).

The last piece of the puzzle, PackageInstaller was modified to correctly display the

explanation of the TruStore certification match error. An example of such fail is shown

in Figure 5.2d. All other functionality of this component is left untouched. However,

the correct handling of this error via, e.g., Google Play, cannot be guaranteed in our

proof-of-concept implementation: as the Google Play application is not a part of AOSP,

we cannot modify its sources. Yet, if the certificate check has failed, the user will still

receive an error and the installation will fail.

To the best of our knowledge, the existing third-party Android application markets

(e.g., Amazon) do not sign the deployed applications; therefore they do not take the

responsibility for security of the deployed applications, while the TruStore does so.

5.4 Android Application Management with TruStore

As we mentioned before, the TruStore modifications have changed only the process

of application installation. At the same time, due to the Android platform security

architecture these changes also influence other aspects of application management. In

this section, we consider how the process of application management has been changed

with the TruStore modifications.

There are three main points in the lifecycle of each application: install, update and

delete. The process of application deletion from the user or the developer point of view

is not changed by TruStore, so it is not considered in this section. The installation

process of an application is considered in details in the previous sections; it is not modified

from the developer’s perspective, but changes from the user perspective (installation may

fail now).

Here it is worth mentioning that Android will prohibit the installation of the same

application from different trusted stores, because these two applications have the same

package name, but are signed with different sets of signatures. The same situation is

for updates: an application cannot be updated by a store that has not installed it. A

potential problem can arise if application updates in one market are vetted more quickly

than in another. Thus, the user may want to install an update from another market, but

will not be allowed to do this by the Android system.

At the same time, the TruStore approach does not reduce the app update capabilities

of the developer, as the scheme of app distribution via a marketplace already assumes that

the updates can be executed only through the market. In our approach the developer has

to submit a new version of his app to the TruStore server, where it will be analysed,

signed and distributed to users. The “kill switch” functionality available, e.g., on the

Apple market and Google Play, which has proved very useful, can also be supported via

TruStore.

102

5.5. RELATED WORK

The TruStore modifications influence the interactions with app components pro-

tected with signature and signatureOrSystem type of permissions, and the sharedUserId

functionality for app interactions. The TruStore modifications will prohibit such kind

of interactions between applications that are installed from different trusted markets, al-

though they have been implemented by the same developer. This limitation comes from

the fact that the applications installed from different markets will have different set of

signatures (although developer signature may be the same). However, this restriction

enables more security: TruStore will ensure safety of the apps loaded via itself, while

safety of apps on other third-party markets cannot be guaranteed, and the interactions

between trusted and untrusted apps may lead to information leaks and privilege escalation

attacks.

5.5 Related Work

As we have mentioned, the existing approaches on securing a mobile platform generally

fall into 4 categories: app rewriting, off-device app verification, platform hardening or

a combination of these techniques. We now overview these approaches and discuss how

a TruStore implementation fits with each of those. For the lack of space we do not

discuss in detail the full body of work available for mobile platform security. Rather,

we give examples of each technique, while analysing how TruStore relates with each

particular approach.

Application Rewriting Application rewriting is a technique of changing the original code

of an app e.g. by replacing calls to a sensitive APIs (e.g., the photo stream access) by

the calls to a security controller introduced on the platform [46, 98, 141], which would

dispatch these calls based on the desired policy. In this way retrofitted apps installed on

the platform will not be able to stealthily grab the sensitive data.

By nature app rewriting is not suitable for iOS and other tightly controlled ecosystems,

as it invalidates the original market signature. On Android the rewriting mechanism has

to replace the developer’s signature with a new certificate and enable a control over which

app is signed with which certificate, in order not to break the app interactions established

through custom developer signatures [141]. In our approach the trust relationships among

apps are maintained automatically, as we do not remove the original signature of the

developer. As well, as opposed to app rewriting, TruStore does not repackage the

original application, therefore it does not violate the rights of the developer.

Application Vetting Application vetting (or off-device app validation) can be used ei-

ther on a market (as it is done, e.g., for iOS) or by the user/an information security

staff of a company before loading the application on device. The existing approaches

103

CHAPTER 5. ATTESTATION SERVICE FOR THE ANDROID PLATFORM

(e.g., [58, 69, 71, 86, 100]) aim at analysing the app code and retrieving security-relevant

aspects of app behavior. For instance, Stowaway [58] analyses Android apps for vulner-

able interaction patterns and PiOS [69] aims at detecting privacy violations, when an

app illegally distributes sensitive user data. The app analysis can be static [58, 69] or

dynamic [86,100,112].

The TruStore approach is by nature complimentary to application vetting. The

server part of a trusted store is in fact expected to validate the app code submitted by

developers.

Platform Hardening Improving the device security by introducing new components to the

platform is currently the leading approach (if judged by the number of research papers).

Notice that TruStore also falls in this category: we introduce new components of the

Android middleware in order to implement the trusted certificates storage and execute

the certificate checks.

There exist a lot of proposals of improvement of mobile platforms that tackle differ-

ent security goals: for example, improvement of the permission system [78], enhancing

the user control over her private data [62, 70] or protecting applications from malicious

interactions and banning the privilege escalation [54]. The TruStore concept is limited

in comparison with some of those techniques in the device context aspect. Namely, the

frameworks for platform hardening at runtime are able to monitor the current situation on

the device; they prevent the attacks because they have knowledge of each individual app

and its actions. TruStore is not able to monitor the device security status, e.g., it is not

able to prevent application collusions. Yet, TruStore achieves security by preventing

loading of malicious apps.

Other Techniques

The crowdsourcing technique for enhancing trust on mobile platform is an approach evan-

gelized by all app markets and investigated by security researchers (see e.g. [42,135]). The

user is encouraged to read app reviews and install only the apps that have received the

community approval. However, the deficiency of this approach is lack of assurance for

new or updated apps. For example, adversaries could publish an innocent game which

would receive a high feedback, and then push an update with a malicious payload.

BYOD

Techniques for the BYOD policies enforcement overlap with the approaches examined

above, but their main goal is to allow an enterprise to secure its assets (corporate apps,

frameworks, data or network), while allowing an employee to use her own device for inter-

acting with these assets. TruStore can be used as a stepping stone for implementation

104

5.5. RELATED WORK

of a BYOD solution in a company, when each application loaded onto a devices for com-

pany environment is validated and certified by TruStore. For instance, this scenario

can be implemented for the MOSES system that we describe in Chapter 6.

105

CHAPTER 5. ATTESTATION SERVICE FOR THE ANDROID PLATFORM

106

Chapter 6

Supporting Security Profiles in
Android

Smartphones are very effective tools for increasing the productivity of business users. With

their increasing computational power and storage capacity, smartphones allow end users

to perform several tasks and be always updated while on the move. Companies are willing

to support employee-owned smartphones because of the increase in productivity of their

employees. However, security concerns about data sharing, leakage and loss have hindered

the adoption of smartphones for corporate use. In this chapter we present MOSES, a

policy-based framework for enforcing software isolation of applications and data on the

Android platform. In MOSES, it is possible to define distinct Security Profiles within a

single smartphone. Each security profile is associated with a set of policies that control

the access to applications and data. Profiles are not predefined or hardcoded, they can

be specified and applied at any time. One of the main characteristics of MOSES is

the dynamic switching from one security profile to another. We run a thorough set of

experiments using our full implementation of MOSES. The results of the experiments

confirm the feasibility of our proposal.

The rest of this chapter is organised as follows. In Section 6.1 we recall the preliminaries

that have driven the research presented in this part of the dissertation. In Section 6.2

we discuss the related work approaches proposed to address the problem. MOSES is

presented in Section 6.3, while details of its architecture are discussed in Section 6.4.

Section 6.5 covers MOSES implementation in details. In Section 6.6 we report on a

thorough evaluation of MOSES.

6.1 Virtual Environments for Smartphones

Worldwide smartphone sales totalled 250 million units in the third quarter of 2013, up 46

percent from the same quarter of 2012 [20]. In the smartphone domain, the Android OS

is by far the most popular platform with 82% market share. Those figures clearly show

107

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

the pervasiveness of Android, mostly justified by its openness to third party developers.

Smartphones allow end users to perform several tasks while being on the move. As a

consequence, end users require their personal smartphones to be connected to their work

IT infrastructure. More and more companies nowadays provide mobile versions of their

desktop applications. Studies have shown that allowing access to enterprise services with

smartphones increases employee productivity [12]. An increasing number of companies

are even embracing the BYOD: Bring Your Own Device policy [40], leveraging the em-

ployee’s smartphone to provide mobile access to company’s applications. Several device

manufacturers are even following this trend by producing smartphones able to handle two

SIMs (Subscriber Identification Modules) at the same time.

Despite this positive scenario, since users can install third-party applications on their

smartphones, several security concerns may arise. For instance, malicious applications

may access emails, SMS and MMS stored in the smartphone containing company confi-

dential data. Even more worrying is the number of legitimate applications harvesting and

leaking data that are not strictly necessary for the functions the applications advertise

to users [70, 84]. This poses serious security concerns to sensitive corporate data, espe-

cially when the standard security mechanisms offered by the platform are not sufficient

to protect the users from such attacks.

One possible solution to this problem is isolation, by keeping applications and data re-

lated to work separated from recreational applications and private/personal data. Within

the same device, separate Security Environments might exist: one security environment

could be only restricted to sensitive/corporate data and trusted applications; a second se-

curity environment could be used for entertainment where third-party games and popular

applications could be installed. As long as applications from the second environment are

not able to access data of the first environment the risk of leakage of sensitive information

can be greatly reduced.

Such a solution could be implemented by means of virtualization technologies where

different instances of an OS can run separately on the same device. Although virtual-

ization is quite effective when deployed in full-fledged devices (PC and servers), it is still

too resource demanding for embedded systems such as smartphones. Another approach

that is less resource demanding is paravirtualization. Unlikely full virtualization where

the guest OS is not aware of running in a virtualised environment, in paravirtualiza-

tion it is necessary to modify the guest OS to boost performance. Paravirtualization

for smartphones is currently under development and several solutions exist (e.g., Trango,

VirtualLogix, L4 microkernel [142], L4Android [67, 104]). However, all the virtualization

solutions suffer from having a coarse grained approach (i.e., the virtualised environments

are completely separated, even when this might be a limitation for interaction). Other

limitation is the hardcoding of the environment specification. Environments cannot be

defined by the user/company according to their needs but they are predefined and hard-

108

6.2. RELATED WORK

coded in the virtual machine. Furthermore, the switching among environments always

require user interactions and it could take a significant amount of time and power. While

researchers are improving some of these aspects [44], the complete separation of virtual

machines and the impossibility to change or adapt their specifications remain an open

issue.

This chapter presents MOSES, a solution for separating modes of use in smartphones.

MOSES implements soft virtualization through controlled software isolation. Basically,

MOSES provides a possibility to separate different aspects of user life activity specifying

several Security Profiles on a smartphone. Such solution provides a user to use the same

device in different environemts, e.g., work and personal, providing the control of the

profiles to the interested parties.

6.2 Related Work

This section provides an overview of the related work. In particular, Section 6.2.1 describes

research efforts in enhancing the security of the Android platform. Section 6.2.2 discusses

BYOD approaches for mobile systems. Solutions based on secure container, virtualization

techniques and other approaches are described in that section.

6.2.1 Android security extensions

There are a lot of solutions proposed to improve the security of Android. In this section

we consider the ones that are more related to MOSES.

In Android, at installation time users grant applications the permissions requested in

the manifest file. Android supports an all-or-nothing approach, meaning that the user has

to either grant all the permissions specified in the manifest or abort the installation of the

application. Moreover, a permission cannot be revoked at runtime. To circumvent this

coarse-grained approach, several solutions have been proposed. Apex [111] allows users to

select which permissions to grant to an application during the installation. Saint [113] is

a policy-based application management system aiming at controlling how applications in-

teract with each other. CRêPE [62] allows a user to create policies that can automatically

control the granting of permissions during runtime.

More recently, [49, 158] concentrate on the protection of the user’s private data. In

particular, MockDroid [49] is a system that can limit the access of the installed applica-

tions to phone data by filtering out information. For instance, an application querying the

contacts’ provider may receive no results even if the provider is not empty. This approach

is further refined in TISSA [158] where users are able to define the accuracy level of the

information revealed to the application by means of privacy levels.

Taintdroid [70] proposes dynamic taint analysis to control how data flow between

applications. In Taintdroid, taints are statically associated with predefined data sources,

109

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

such as the contact book, SMS messages, the device identifier (IMEI), etc. Taintdroid

tracks the flow of tainted data and notifies the user if the tainted data leave the device

through the outbound network connections. By using Taintdroid’s tainting capability,

AppFence [93] provides additional mechanisms to shadow sensitive data and to block

unauthorised leakage of data via network. YAASE [125] encompasses tainting to prevent

confuse deputy and privilege escalation attacks. In [76,77] Taintdroid capabilities are used

to enforce data-driven usage control. In [43,102] taint tracking enables the system to trace

sensitive information, enterprise and health data respectively, and enforce policies for that

data. Unfortunately, Taintdroid has some limitations such as inability to trace implicit

flows. Moreover, it prevents the load of shared libraries by third-party applications to

prevent leakages through native code.

Context information plays a pivotal role to enhance security in mobile devices. In [47,

56,62,111], context is used to trigger security rules at runtime. The approaches in [76,77]

use context to limit access to data in some environments. In [43], special context is a

necessary condition to generate security notifications. In [102] the context is used to taint

data generated in predefined environments. FlaskDroid [56] uses context to set up the

values of one or more boolean variables in policies. These boolean variables are later used

to instantiate a policy that is enforced by FlaskDroid’s policy enforcement system, which

is based on the extension of SEAndroid mandatory access control. The mandatory access

control implemented in [56,130] considerably diminishes the effect of root exploits.

6.2.2 Bring Your Own Device approaches

Besides approaches to improve Android security in general, some solutions specifically

aimed at supporting the BYOD have been proposed. The most important are listed

below.

BYOD is an emerging paradygm, which allows employees to bring their own devices to

work and to use them for execution of business related tasks. It is a win-win situation both

for employees and companies. From business point of view this increases productivity and

availability of the workers, from the other side it reinforces the satisfaction and happiness

of employees [53]. At the same time, the use of personal devices increases security risks

if they are connected to corporate network or have access to business data. To minimize

the risks, BYOD policies have to exist in every organization backed with the abilities

to control corporate data on the devices. One approach to control this is called dual

persona [17] that provides possibility to maintain two separate environments on a phone

(usually for personal and for corporate use), when the corporate one is controlled by IT

department of a company. In this section we provide an overview of dual persona and

other approaches to control the usage of personal devices for business tasks.

110

6.2. RELATED WORK

Secure container

Secure container (SC) is a special mobile client application that creates an isolated en-

vironment on the phone at the application layer. The application allows an enterprise

administrator to create policies which control this isolated environment but cannot con-

trol the behaviour of a user outside this container [17]. This approach does not require

the modification of the system image and is widely explored in the research community.

AppGuard system [46] for instance, is a standalone Java application that disassembles apk

file, inlines security checks before dangerous instructions according to a selected policy

and then reassembles and signs the package. Thus at runtime, before executing a danger-

ous instruction AppGuard performs a security check and if the instruction is not allowed

according to the policy an exception is thrown. Jeon et al. [98] use package rewriting to

substitute dangerous instructions to equivalent ones, which are guarded by additional se-

curity checks. These guarded functions are implemented in a standalone Android service,

which performs the additional checks. Aurasium system [141] intercepts some critical

Bionic libc functions (e.g., read(), write(), open()) and calls the Aurasium (safe) ver-

sion of them.

Many commercial solutions use the concept of security container implemented as a

user application. NitroDesk TouchDown [30] and Good [21] offer solution with a prefixed

set of business functionality in the container (i.e., email). Other solutions, (for instance,

Fixmo [19]) offer a set of basic applications and also an SDK that can be used to develop

new applications, if needed. The SDK provides wrappers for dangerous operations and

passes them through the secure container application. Divide [16] and AT&T [13] use

package rewriting technique to wrap up dangerous instructions of third-party applica-

tions, so that the interaction of these rewritten applications with the outer world happens

through the secure container.

Mobile virtualization

Virtualization provides environments that are isolated from each other, and that are

indistinguishable from the “bare” hardware, from the OS point of view. The hypervisor is

responsible for guaranteeing such isolation and for coordinating the activities of the virtual

machines. Virtualization has been widely used in traditional computers because it can:

(i) increase security, and (ii) reduce the cost of deployment of applications (the hardware

is shared in a secure way). With the spreading of mobile devices and with the increase of

their performance capabilities the question of porting virtualization to mobile platforms

became actual. Virtualization for mobile systems provides specific advantages like: (i)

the possibility to separate communication subsystems (backed by real-time operating

system) from high-level application code (which requires functional rich operating system

with good interfaces); (ii) an opportunity to provide licence separation; (iii) a chance to

111

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

increase the security of the communication stack [90].

However, there are still several barriers for the adoption of virtualization in mobile

devices. The main one is that ARM architecture, which is the most popular architec-

ture for mobile devices, has a non-virtualisable instruction set architecture [104] (except

Cortex-A15 design [110], which adds hardware-assisted virtualization capabilities). So as

efficiency is a major concern in embedded virtualization, full virtualization approaches

(emulation and binary translation) are not yet applicable for these devices because they

are computational expensive. Thus, for embedded devices paravirtualization is used,

which requires source-code modification of guest operating system [97]. There are several

approaches to port popular Linux hypervisors to ARM architecture: Xen [97], L4 [104],

KVM [65]. There are also several industry solutions: MVP by VMware [48], OKL4 by

OK Labs [31] and vLogix Mobile by Red Bend [26]. All these solutions can be applied

to create separate secure environments for business and private use. However, since all

these virtual machines are simply ported to mobile platforms while being designed for

PCs, they all share low performance.

A much better approach is Cells [44]. Cells is a new virtual machine specifically de-

signed for mobile platforms. It provides lightweight virtualization for Android. The

authors modified Android system in such a way that it is possible to have several sepa-

rated environments, called Virtual Phones, based on the same operating system. Virtual

Phones are completely separated from each other using kernel-level and user-level device

namespace mechanism.

Yet, a common drawback to all the above solutions is that switching between virtual

environments requires user interactions, and the configuration of each virtual environment

is hardcoded and cannot be changed by the end-user.

Other approaches

Besides the above approaches there few other solutions. Gupta et al. [87] modified Android

framework to support dual mode of operation, private and enterprise. The modification

allows to restrict the use of communication capabilities of a phone, to force communication

through enterprise VPN and have an encrypted external storage in enterprise mode. The

authors of TrustDroid [55] proposed to monitor IPC communications, network traffic

and filesystem access to separate data exchange between different domains, for instance,

between enterprise and personal environments.

Other solutions use the capabilities of Taintdroid to track sensitive information. The

main difference of these approaches is how to discover sensitive information. For in-

stance, Feth et al. [76] proposed to rely on external authorities which supply data-usage

policies with data. Thus, what data are sensitive in a smartphone is defined by external

trusted authorities. In [102], the authors taint all the data that is produced or accessed

by enterprise applications as sensitive information. Meanwhile, Ahmed et al. [43] relies

112

6.3. MOSES OVERVIEW

on the separation of public and private sources of data to detect sensitive information.

Differently from MOSES, none of these solutions detects when a profile is active without

user interaction. Furthermore, all of them offer only profiles predefined by the solution

developers.

6.3 MOSES Overview

This section provides an overview of our approach named MOde-of-uses SEparation in

Smartphones (MOSES).

MOSES provides an abstraction for separating data and apps dedicated to different

contexts that are installed in a single device. For instance, corporate data and apps

can be separated from personal data and apps within a single device. Our approach

provides compartments where data and apps are stored. MOSES enforcement mechanism

guarantees data and apps within a compartment are isolated from others compartments’

data and apps. These compartments are called Security Profiles (SP) in MOSES.

Generally speaking, a SP is a set of policies that regulates what applications can be

executed and what data can be accessed.

One of the features introduced in MOSES is the automatic activation of SP depending

on the context, in which the device is being used. SPs are associated with one or more

definitions of Context . A context definition is a boolean expression defined over any

information that can be obtained from the smartphone’s Raw Sensors (e.g., GPS sensor)

and Logical Sensors. Logical sensors are functions which combine raw data from physical

sensors to capture specific user behaviours (such as detecting whether the user is running).

When a context definition evaluates to true, the SP associated with such a context is

activated. It is a possible situation when several contexts, which are associated with

different SPs, may be active at the same time. To resolve such conflicts, each SP is also

assigned with a priority allowing MOSES to activate the SP with the highest priority. If

SPs have the same priority, the SP, which has been activated first, will remain active.

MOSES permits a user to manually switch to a specific SP. To this end, MOSES

provides a system app that the user can employ for forcing MOSES to activate a given

SP. However, this behaviour can be restricted to avoid that the user activates unwanted

SP in a given context (for instance, switching to a personal SP when at work).

Each SP is associated with an owner of the profile and can be protected with a pass-

word. A SP can be created/edited locally through an app installed on the device. Addi-

tionally, MOSES supports remote SP management. The former possibility may be used

by a user of the phone for managing her personal SP, while the latter may be employed by

an enterprise administrator to control the work SP. To avoid that the user tampers with

the work SP, the security administrator protects the work SP with a password. In this

way, MOSES can be used for realising a Mobile Device Management solution to manage

113

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

remotely the security settings of a fleet of mobile devices.

The current version of MOSES leverages the same idea of lightweigth separation of

SPs as the one presented in [123]. At the same time, although the same idea is exploited,

the approach used by MOSES is completely new. The previous version of MOSES [123]

completely relies on Taintdroid to split data between different profiles. Data separation

occurred using user-defined policies, which restricted the flow of information between

different profiles. In the current version of MOSES, the separation of application data

is implemented on Linux kernel level through filesystem virtualization approach. This

allows our system to provide app data segregation out of the box. Moreover, a user in

the new version of MOSES needs to define security policies only if she wants to apply

fine-grained constraints to data.

6.4 Architecture

MOSES consists of the components presented in Figure 6.1. Central to MOSES is

the notion of Context . The ContextDetectorSystem component is responsible for de-

tecting context activation/deactivation. When such an event happens, the component

ContextDetectorSystem sends a notification about this to the SecurityProfileManager.

The SecurityProfileManager holds the information linking a SP with one or more

Context. The SecurityProfileManager is responsible for the activation and deactivation

of SPs. The SecurityProfileManager implements the following logic:

• If a newly activated Context corresponds to the active SP then the notification is

ignored;

• If the SP corresponding to a newly active Context has a lower or equal priority to

the currently running SP, then the notification is ignored;

• In all other cases, a SP switch has to be performed. This means that the currently

running SP has to be deactivated and the new SP becomes active.

In the latter case, the SecurityProfileManager sends a command to the component

MosesHypervisor informing what is the new SPs that needs to be activated.

The MosesHypervisor is the component that acts as a Policy Decision Point (PDP) in

MOSES. The MosesHypervisor provides a central point for MOSES security checks

against the policies defined for the active SP to regulate access to resources. The

MosesHypervisor delegates the policy checks to its two managers: the MosesAppManager

and the MosesRulesManager. The former is responsible for deciding which apps are al-

lowed to be executed within a SP. The latter takes care of managing Special Rules.

The MosesPolicyManager acts as the Policy Administrator Point (PAP) in MOSES.

It provides the API for creating, updating and deleting MOSES policies. It also allows

114

6.4. ARCHITECTURE

Linux Kernel

Android

Framework

Applications

MOSES

MosesPolicyGui

MosesHypervisor

MosesApp

Manager

MosesRules

Manager

PDP

PIP

MosesTaint

Manager

MosesPolicy

Manager

PAP

 moses.db

ContextDetector

System

Moses

Mounter

PEPContentProvider

Security Policies

for

DEFAULT SP

Security Profile:

DEFAULT

App 2 Data 2

App 1 Data 1

Security Policies

for

WORK SP

Security Profile:

WORK

App 1 Data 1'

Security Policies

for

PRIVATE SP

Security Profile:

PRIVATE

App 2 Data 2"

App 1 Data 1"

Moses

Reaper

Modified Android components MOSES components Applications

LocationManager

...

OSFileSystem

OSNetworkSystem

ActivityManager

Service

Launcher

MosesSpChanger

SecurityProfileManager

Figure 6.1: MOSES Architecture

a user to define, modify, remove monitored Contexts and assign them to SPs. Moreover,

this component also controls access to MOSES policy database (moses.db) allowing only

applications with special permissions to interact with this component. The permission

has the type signature, therefore only the applications that are signed with the same

certificate as the system will have access to the functionality of this component.

The MosesTaintManager component manages the “shadow database” which stores

the taint values used by Taintdroid. We have extended the functionality of Taintdroid to

perform more fine-grained tainting. In MOSES, we can taint specific rows of a content

provider: to be able to perform per row filtering when an app access data in the content

provider. For instance, it is possible to filter out from the query result data the rows which

contain the information about device identifiers or user contacts. Given the fact that the

enforcement of policies depends on the information provided by the MosesTaintManager,

this component acts as a Policy Information Point (PIP).

The decisions taken by the MosesHypervisor need to be enforced by the Policy En-

forcement Point (PEP). MOSES affects several components within Android middleware

where decisions are enforced. For this reason, the PEP includes several Android compo-

115

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

nents such as LocationManager and ActivityManagerService. Moreover, some Android

core classes (such as the OSFileSystem and OSNetworkSystem) are modified to enforce

decisions regarding the access to the filesystem and network, respectively.

The enforcement of separated SPs requires special components to manage application

processes and filesystem views. When a new SP is activated, it might deny the execution

of some applications allowed in the previous profile. If these applications are running

during the profile switch, then we need to stop their processes. The MosesReaper is the

component responsible for shutting down processes of applications no longer allowed in

the new SP after the switch.

In MOSES, applications have access to different data depending on the active profile.

To separate data between profiles different filesystem view are supported. This function-

ality is provided by the MosesMounter. More details are considered in Section 6.5.2.

To allow the user of the device to interact with MOSES, we provide two MOSES

applications: the MosesSpChanger and the MosesPolicyGui. The MosesSpChanger allows

the user to manually activate a SP. It communicates with the MosesHypervisor and sends

it a signal to switch to the profile required by the user. The MosesPolicyGui allows the

user to manage SPs. We consider this component in details in Section 6.5.5.

6.5 Implementation

This section describes implementation details of some key aspects of MOSES. In partic-

ular, the version described here is based on the Android Open Source Project (AOSP) [?]

version 2.3.4 r1. Moreover, MOSES incorporates the functionality of Taintdroid [70] to

taint sensitive data.

6.5.1 Context Detection

One of the contributions of MOSES is that it can automatically switch SPs based on

the current Context. The ContextDetectorSystem is responsible for monitoring Con-

text definitions and for notifying the listeners about the activation or deactivation of

a Context. The SecurityProfileManager component, which is one of these listeners,

is notified about the change through the callback functions onTrue(context id) and

onFalse(context id), which correspond to activation and deactivation of a Context re-

spectively. The context id parameter represents a Context identifier. So as MOSES

context detection functionality is decoupled from the rest of the system, it may be easily

extended by integrating other context detection solutions [103,136].

When the system starts up, MOSES selects from the database information about all

Contexts and corresponding SPs. MOSES preserves this information in a runtime map

in the form of 〈Ci, (SPk, prtk)i〉, where Ci is the identifier of Context and (SPk, prtk)i

116

6.5. IMPLEMENTATION

is a tuple, which corresponds to the Context Ci and consists of SP identifier SPk and

the priority prtk that corresponds to this profile. When the ContextDetectorSystem

detects that a Context Ci becomes active (meaning the Context definition is evaluated

to true), we select from this map the corresponding tuple (SPk, prtk)i and put it in the

list of active SPs. Because more than one Contexts might be active at the same time,

there may be more than one SP to switch to. In this case, from the list of active SPs

the one with the highest priority is selected. If the selected SP identifier differs from the

identifier of the currently running SP, the ContextDetectorSystem sends a signal to the

MosesHypervisor to switch to the new profile. Similarly, when ContextDetectorSystem

detects that a Context Ci becomes inactive, the tuple (SPk, prtk)i is deleted from the

list of active SPs. After that the selection procedure of a SP with the highest priority is

repeated.

6.5.2 Filesystem Virtualization

To separate data between different SPs, we use a technique called directory polyinstanti-

ation [39]. A polyinstantiated directory is a directory that provides a different instances

of itself according to some system parameters. In brief, for each SP MOSES creates a

separate mount namespace [29].

The Android filesystem structure is quite stable, i.e., the system forces an application to

store its files in the application’s “home” directory that is /data/data/<package name>/

(<package name> is the package name of the application). During the installation of an

application, Android creates this “home” folder and assigns it Linux file permissions to

allow only the owner of the directory (in this case the application) to access the data

stored in it. To provide applications with different data depending on a currently running

SPs, polyinstantiation of “data” folder may be used, i.e., for each SP a separate mount

namespace, which points to different “physical” data folder depending on the identifier of

a SP, may be created. In MOSES the described approach is used with two modifications.

The first modification let the system to store all “physical” data directories under one

parent directory (/data/moses private/). The second modification creates the bindings

not between the whole data folder and its “physical” counterpart, but bindings for separate

application folders. The former modification allows MOSES to control direct access to

the “physical” directories, while the latter permits to decrease storage overhead, because

the usage of some apps is prohibited in some SPs.

The MosesMounter component is responsible for providing the above functionality. In

particular, it receives the list of applications’ package names that are allowed to execute

in a SP. For each package name, the MOSES system builds the paths to the application

“home” directory and to its MOSES “physical” counterpart, using the information of

the identifier of a newly activated SP. These two paths are passed to the mosesmounter

117

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

native tool. This tool at first checks if MOSES “physical” directory exists. If not, then

it creates this folder and copies there the initial application data from the corresponding

“home” directory. Then the mosesmounter mounts the “physical” directory to a “home”

directory using the Linux command mount(target, mount point, "none", MS BIND,

NULL) [29], where mount point corresponds to the path of the “home” directory and

target corresponds to the path of the “physical” folder. Thus, the “home” directory

always contains the initial copy of the application data, which are created by the Android

system during the application installation. If a new SP is created, these initial data are

copied to the “physical” directory providing the application with a fresh copy of its initial

data as if the application has just been installed. If this process finishes successfully,

the MosesMounter stores the name of this package in the list of mounted points. Thus,

the process of polyinstantiation is completely transparent for the applications: after the

mounting the applications work with the same paths as usual, although these paths point

to another “physical” locations. Thus, there is no need to modify the applications to

support the separation of data between different SPs.

Before switching to a new SP, the MosesMounter has to unmount all previously

mounted points using the values stored in the list of mounted points. Similarly to the

mounting, the MosesMounter passes the path to a mounted point (from the list of mounted

points) to the mosesmounter tool, which performs unmounting. During this operation it

is possible that some processes hold some files opened. In this case, the unmount command

will fail. To overcome this problem, MOSES sends a SIGTERM signal to the process and

repeats the unmounting. If after this the unmounting is still unsuccessful, the MOSES

will send a SIGKILL signal to the process and once again performs the unmount operation.

6.5.3 Dynamic Application Activation

Each SP is assigned with a list of application UIDs that are allowed to be run when this

profile is active. As it was discussed in Section 2.3, each application during the installation

receives its own UID. MOSES uses these identifiers to control which applications can be

activated for each SP. It should be mentioned that some packages can share the same

UID. This happens if the developer of these applications have explicitly assigned the same

value to sharedUserId property in the manifest files of the applications, and signed these

packages with the same certificate. Thus, during the installation of these applications,

the Android system assigns them the same UID. In this case, MOSES cannot distinguish

these applications and if one of them is allowed in one profile the other will be allowed as

well.

During the SP switching, the MosesAppManager selects from the MOSES database

the list of UIDs, which are allowed in the activated profile, and stores it into the set

of allowed UIDs. To control the launch of applications’ services and activities, the

118

6.5. IMPLEMENTATION

hooks into the retrieveServiceLocked and startActivityMayWait methods of the

ActivityManagerService and the ActivityStack classes correspondingly are put. These

hooks communicate with the MosesAppManager and check against the set of allowed apps

if a component of an application can be launched. Additionally, the MosesAppManager

controls the appearance of application icons in Android’s Launcher application. When

a new SP is activated, only the icons of the allowed applications for this profile will be

displayed.

6.5.4 Attribute-based Policies

Within each SP, MOSES enforces an Attribute Based Access Control (ABAC) model [146].

The idea is that within each SP, users can define fine-grained access control policies to

constraint application behaviour. For instance, the user may want to deny an application

to read the files on an external storage. In this case, the user may write a policy which

will still let the application to run within the profile but the access of this application to

files on an external storage will be limited. For defining and editing policies, MOSES

provides an activity shown in Figure 6.2d.

We have defined a simple policy language using the ABAC model. The attributes types

that are taken into consideration in the MOSES language are capitalised in Listing 6.1.

These are Subject, Operation, Taint, Target, andSP-Name. These attributes are described

in the following.

1 Subject Operation [Taint] Target
2 decision [perform action(param -list)] with scope SP -Name

Listing 6.1: Policy language used for ABAC rules

Subject represents the application to which the rule is applied. The application UID

is retrieved through the GUI provided by MOSES for management (see Figure 6.2c),

listing the applications installed in the system.

Operation is the action that the subject is executing. The value of this attribute

is dependent on the the control hooks added by MOSES in the Android framework.

Each hook communicates with a special class in the framework library that processes

the information obtained from the operation hook. For instance, for controlling access

to ContentProvider, we have injected hooks in the ContentResolver class. Similarly, for

network and filesystem operations we have injected hooks in the core library. Currently,

MOSES supports the following Operation types:

• ContentProvider: Query ContentProvider, Insert in ContentProvider, Update

ContentProvider, Delete ContentProvider.

• LocationProvider: Get Last Known Location, Request Location Updates, Add

119

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

(a) (b)

(c) (d)

Figure 6.2: Screenshots of MOSES Profile Manager application: (a) Context creation, (b) Security
Profile creation, (c) Application assignment to a Security Profile, (d) ABAC Rule creation

120

6.5. IMPLEMENTATION

Proximity Alert, Request Single Update.

• Network: Receive Internet Data, Send Data to the Internet.

• Filesystem: Read from a File, Write to a File.

• DeviceId: Get Device ID.

MOSES supports also information flow control using the tainting mechanism provided

by Taintdroid. Policies can include the optional attribute Taint to specify the taint type

associated with the data accessed by the subject.

The Target attribute represents the resourced that is being accessed. It can have

either fixed or volatile values. Values such as LocationProvider and DeviceId are

fixed and correspond to GPS and IMEI. In the case of ContentProvider, Network and

Filesystem the Target values are volatile. This means that a target may be specified

partially. For instance, for the Filesystem the user can specify the following partial target

[/data/data/<package>/*]. We developed these volatile targets to allow the system to

enforce different behaviour for the targets that differs only partially. If a user wants to

specify different access behaviour, for instance, for a directory and its subdirectory, she

should create a separate policy rule for the directory and another one for the subdirectory.

SP-Name attribute represents the SP name where the policy is valid.

The decisions ALLOW, DENY and ALLOW WITH PERFORM can be assigned to policy rules.

The effects of the first two are obvious. The decision ALLOW WITH PERFORM corresponds to

allow with a restrictive obligation that performs additional action of the data returned by

the operation. For instance, for “Get Device ID” operation a function can be chosen that

will obfuscate the real IMEI of the device. The functions and their implementations are

specified in a special built-in library. ALLOW WITH PERFORM decision manage to enforce

security constraints specified in the profile minimizing the impact on already installed

applications.

It is possible that two or more rules may be defined for the same attribute values.

To resolve these conflicts, the user should also assign a priority value to each rule. In

this case, the decision of the rule with the highest priority will have precedence over the

decisions of other rules; in the case of equal priorities, then the last inserted rule takes

priority.

For some combinations of attribute values, it might be the case that no rules apply.

In this case, our system uses a default decision value (either allow or deny), which is

assigned to the SP.

6.5.5 Security Profile Management

To give a user the ability to manage the SPs in her device, the MosesPolicyGui application

is developed. This is a system application signed with a system key and assigned with

121

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

a special permission. This allows MosesPolicyGui application to communicate with the

MosesPolicyManager and manage the SPs. Figure 6.2 provides several screenshots of the

application running on a device. Due to the lack of space, we will not show screenshots

of all activities the application provides.1

The MosesPolicyGui manages Contexts and SPs. We develop an application that

allows a user to easily configure MOSES functionality. Figure 6.2a shows how to create a

new Context definition. The user specifies the name of a Context and the parameters of

the sensors used to detect the context around the device.

To define a new SP the application provides a wizard that guides the user through the

steps. Figure 6.2b shows the first activity of this wizard. In this activity, the user has to

define the name of a profile, the default decision and the profile priority. The screenshot

in Figure 6.2c shows how to assign applications to the SP. Finally, Figure 6.2d shows

how to create an ABAC policy rule to deny the browser (UID 10036) to access Google’s

homepage.

6.6 MOSES Evaluation

In this section, we report on the thorough experiments we run to evaluate the performance

of MOSES. For all the experiments, we used a Google Nexus S phone.

6.6.1 Energy overhead

To measure the energy overhead produced by MOSES, we performed the following tests.

We charged the battery of our device to the 100%. Then, every 10 minutes we run four

system applications (sequentially) via a monkeyrunner [27] script: Calculator, Browser,

Contacts and Email. For each of them the script performed common operations repre-

sentative for the applications (multiplication of numbers in case of Calculator, browsing

several webpages in case of Browser, calling a number and creating an account in case

of Contacts, and composing and sending a email in case of Email application). Each

experiment lasted for a total of 120 minutes. We executed this experiment for three types

of systems: Stock Android, MOSES without SP changes, and MOSES with SP changes

(the system switched between two profiles every 20 minutes).

During each experiment, every 10 seconds, our service measured the level of the battery

and wrote this value into a log file. For each of the three considered systems, we executed

the test 10 times and averaged the obtained values. The results of this experiment are

reported in Figure 6.3. We note that the curves for the three considered systems behave

similarly. This shows that the fact that MOSES is just running, or even switching between

context does not incur a noticeable energy overhead. Since the goal of the experiment was

1The demo presented at [124] is available on our website [28].

122

6.6. MOSES EVALUATION

only to evaluate the overhead compared to Taintdroid and Stock Android, rather than

to calculate the absolute energy consumption of MOSES, we consider this approach as

sufficient for the purpose to approximate energy usage.

 80

 85

 90

 95

 100

 0 20 40 60 80 100 120

B
at

te
ry

 le
ve

l (
%

)

Time (m)

Stock Android
MOSES w/out SP switch

MOSES with SP switch

Figure 6.3: Energy overhead

6.6.2 Storage overhead

One of the most significant overheads produced by MOSES is the storage overhead. In

fact, the separation of data for different SPs means that some application information

will be duplicated in different profiles.

In general, the storage size consumed by a system can be expressed by the following

equation:

size = size(OS) +
k∑

j=1

size(AEj) +
k∑

j=1

size(ADj), (6.1)

where OS is the operating system, AEj and ADj, are the application executables and

the application data or the jth application. In the specific case of MOSES, size(AD) is

equal to:

123

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

size(ADMOSES) =
n+1∑
i=1

k∑
j=1

(size(ADij)), (6.2)

where size(ADij) is the size of the data of the jth application in the ith SP, k is the

number of installed applications, and n is the number of SPs. One additional copy of

application data (i.e., the (n + 1)-th one) is required to store initial information of all

applications. If a new SP is created, we need a “clean” copy of application data to be

replicated into this new profile. Hence, MOSES stores a copy of application data just

after the installation of the application: this copy is later used for replication when a

new SP is created. It should be mentioned that for MOSES only the initial data of

applications are duplicated. The data produced by applications during runtime are not

replicated between SPs. Secondly, the data of applications, which are not allowed in a

profile, are not copied into the profile.

When comparing MOSES with competitor approaches, MOSES produces less storage

overhead. For instance, in case of mobile virtualization [26, 31, 48] not only application

data are duplicated (as for MOSES), but also application executables and an operating

system (sometimes partially [44]). Dual persona approaches [13, 16, 98, 141] additionally

should have a separate copy of application executables in different profiles. Thus, MOSES

adds less overhead comparing to this set of approaches because it only works with one

copy of application executables.

Moreover, other improvements (currently left as future works) are possible for MOSES,

e.g., currently for each SPs MOSES stores its own copy of the shared libraries of an

application, instead they could be shared among the different profiles.

6.6.3 Microbenchmark

To assess the overall performance of our system, we decided to run a set of experiments

with a benchmarking system. In particular, we used the Java microbenchmark Caffeine-

Mark (version 3.0) [14] ported on the Android platform. This benchmark runs a set of

tests which allows a user to assess different aspects of virtual machine performance. The

benchmark does not produce absolute values for the tests. Instead it uses internal scoring

measures, which are useful only in case of comparison with other systems. The overall

score of CaffeineMark 3.0 is a geometric mean of all individual tests. That is why, to as-

sess MOSES we decided to compare it with Stock Android system (version 2.3.4 r1) and

Taintdroid system [70] (based on the Android system version 2.3.4 r1). We included in

the comparison Taintdroid because MOSES incorporates its functionality, so we wanted

to highlight the additional overhead that MOSES introduces compared to Taintdroid. We

ran each benchmark 10 times.

For CaffeineMark 3.0 Java benchmark the observed results are reported in Figure 6.4.

124

6.6. MOSES EVALUATION

From the figure, we notice that the results for Taintdroid and MOSES are almost the

same: the checks that MOSES implements on top of Taintdroid do not have a significant

influence on the results of this benchmark. Meanwhile, the difference of overall scores be-

tween unmodified (Stock Android) and modified systems (either Taintdroid or MOSES) is

quite big. In fact, we can observe the performances are reduced by a 34%: the benckmark

scores are 5910.7 for Stock Android, while 3895.9 for Taintdroid and 3923.3 for MOSES,

the main contributors to this overhead are Loop (about 51% overhead) and Float (48%)

tests.

 0

 2000

 4000

 6000

 8000

 10000

 12000

Sieve Loop Logic String Float Method Overall

C
af

fe
in

eM
ar

k
sc

or
e

Stock Android
Taintdroid 2.3.4

MOSES

Figure 6.4: CaffeineMark Java benchmark results (with standard deviation)

6.6.4 Security Profile Switch Overhead

In this section, we present the results of the experiments measuring the time required to

switch between SPs. We remind that during the profile switch (from an ”old” to a ”new”

profile), MOSES performs the following operations: the unmounting of the data folders of

the old profile, the mounting of data folders of the new profile, the unloading of the old and

the loading of the new Special Rules. Therefore, the time to switch between SPs should

depend on the number of Special Rules and the number of user apps. To find out the

dependency between the time and these parameters we ran two sets of experiments. First,

we measured the time required to switch SPs varying the number of user applications.

125

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

Then, we did the same measurement while changing the number of Special Rules. To

measure this time, we put a call SystemClock.elapsedRealtime() before and after the

switching operations, and calculated the difference between the values produced by this

function.

To explore the dependency between the time and the number of applications we varied

the number of user applications from 0 to 10. For each number of applications, a clean

MOSES system was used (i.e. the system had been flashed on the phone just before the

experiment). Then, a SP was created allowing all applications to be launched. Then, we

measured the time of switch between this new profile and DEFAULT SP. For each number

of applications we repeated the switch for 20 times and then calculated the average time

of the switch. For all experiments the same set of 10 applications was used.

The results are shown in Figure 6.5a. From this figure, we observe that the switching

time increases with the number of applications: moving from 1962 ms for 0 applications

to 3496 ms for 10 applications. The rise of the time is associated with the increase

of mounting and unmounting operations that MOSES performs during the switch (see

Section 6.5.4). Furthermore, we note that the time is not uniformly rising with the growth

of the number of applications. In particular, after the third application we observe a sharp

increase of the function. The explanation of this phenomena is the following. The third

application (named com.antivirus) after the installation starts a service that opens a file

(google analytics.db) and keeps it opened. Thus, MOSES has to kill the service before

the unmounting could be performed successfully. In fact, MOSES system is designed in

such a way that at first it simply tries to unmount the folder. Then, if this operation

is unsuccessful, it sends to the blocking process a SIGTERM signal and tries to unmount

again. If this try fails then MOSES kills the process, which holds a file opened, and

performs the unmounting. Between the different tentatives, MOSES sleeps for 200 ms.

We observe that the main time overhead is brought by these unsuccessful unmountings.

The spread between 3 and 10 applications is merely about 250 ms.

The second experiment was conducted similarly to the first one, but in this case we

varied the number of Special Rules assigned to a new SP : from 0 to 100, increasing by 10

rules each time. The results of this experiment are reported in Figure 6.5b. As we can

see, the time of the switch slowly increases with the increase of the number of rules. We

can also note that the standard deviation for the reported values is significant.

We also noticed that the time for the first change of profiles is considerably higher

than for the following switches (although this cannot be inferred from the graphics which

report average values). For instance, for 5 applications the time of the first switch is

9172 ms while for the second is just 3431 ms. In fact, during the first switch, for each

application MOSES has to copy the initial data of an application to a new profile. That

is why, the time for the first switch is several times higher than for the following switches.

This fact also explains the wide spread of the standard deviation on the graphics.

126

6.6. MOSES EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

 0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 ti
m

e
(m

s)

Number of user apps

(a)

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 ti
m

e
(m

s)

Number of rules
(b)

Figure 6.5: Time for profile switch (with standard deviation) as a function of the number of: (a) User
applications, (b) Special Rules

6.6.5 Overheads of fine-grained control

As for MOSES fine-grained control overhead, it is mainly due to the checks of ABAC

rules. To assess this overhead, we developed three different applications. The first appli-

cation gets the IMEI of the phone, and stores it into the Android log. The second app

reads the information about 10 contacts from the address book of a phone. The third one

writes 1000 characters in a file. We measured the time of the checked operation using sys-

tem function SystemClock.elapsedRealtime(). We ran these applications on different

systems: Stock Android, Taintdroid (version 2.3.4) and on several variants of MOSES

system, which differ from each other by the number of ABAC rules. In particular, we

varied the number of rules for each app from 0 to 100, therefore, the total number of rules

in the system changed from 0 to 300 (since there were three different applications). All

ABAC rules for an app were the same. An example of ABAC rule for filesystem applica-

tion (MsFsTester) is provided in Listing 6.2. During the assignment of the rules to SP,

we assigned the same priority to all of them. We underline that this means considering

the worst case, since during the check MOSES has to consider each rule. For each system,

we ran each type of check for 1000 times and calculated the average, standard deviation

and overhead for each variant of the systems. The results are summarized in Table 6.1.

Moses 010 in “System” column means that there are 10 ABAC rules for each considering

operation resulting to total 30 rules entered into the system. Similarly, Moses 000 means

that there are no rules in MOSES system assigned to the current SP.

During the SP change MosesRulesManager selects from the database all ABAC rules

related to the new profile and stores them in a special hashmap, where a key is equal to

a tuple (UID, operation) and the value corresponding to this key has the form List <

Map < (target, priority) >>. Additionally, to each target an identifier of the ABAC rule

is attached. Thus, at the first step the MosesRulesManager selects from the hashmap the

127

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

list of rules, which has been defined for an particular application (using UID) and for par-

ticular operation (e.g., write to a file). Then, during the second step MosesRulesManager

iterates over the list and tries to find a match (using string comparison) between the

target specified in the rule and the target provided by the system. If the match is found

and the priority of this target is higher then the priority of the previous match (or -1 if

it is the first time when match happens), then the system updates the current priority.

When all items in the list are considered, the MosesRulesManager selects the identifier

attached to the target with the highest priority that matches to the target provided by

the system. Using this identifier MosesRulesManager selects the decision assigned to this

ABAC rule. Thus, the time overhead during the check against the ABAC rules is emerged

during these two steps.

Hashmap implementation provides constant time for getting an item, so the time over-

head during the first step is not influenced considerably by the number of ABAC rules in

the system. At the same time, the overhead during the second step depends on the num-

ber of rules. During this step, MosesRulesManager needs to iterate over the list of items

and compare each target against the target attribute (we also support partial match).

Our test cases have been designed assuming the worst case, i.e., for each operation all the

list will be iterated and every target will be checked. In real-world scenarios, we assume

that the number of entries in the list for each tuple (UID, operation) will be smaller so

the overhead will be smaller.

1 "UID of MsFsTester" "Write to a File" "/data/data/org.mosesdroid.msfstester/files/test"
2 "ALLOW" with scope "WORK"

Listing 6.2: Example of ABAC rule

Table 6.1: Operation time: average (AV), standard deviation (SD), overhead (OV)

SYSTEM Operations
Get Device ID Query ContentProvider Write to a File

AV, ms SD, ms OV, % AV, ms SD, ms OV, % AV, ms SD, ms OV, %
Stock Android 1.018 0.700 0.00 10.516 7.653 0.00 0.818 2.893 0.00

Taintdroid 1.190 0.775 16.90 12.768 8.140 21.41 0.821 2.921 0.37
Moses 000 1.854 0.896 82.12 20.228 8.682 92.35 1.890 2.760 131.05
Moses 010 1.948 0.954 91.36 20.444 9.155 94.41 2.154 2.808 163.33
Moses 020 1.951 0.911 91.65 20.721 9.419 97.04 2.190 2.777 167.73
Moses 030 2.003 1.876 96.76 20.820 8.849 97.98 2.240 2.891 173.84
Moses 040 2.020 0.905 98.43 20.879 9.362 98.55 2.368 2.786 189.49
Moses 050 2.018 0.849 98.23 20.772 9.039 97.53 2.459 2.856 200.61
Moses 060 2.018 0.907 98.23 21.018 9.188 99.87 2.459 2.624 200.61
Moses 070 2.027 1.094 99.12 20.894 8.792 98.69 2.586 3.249 216.14
Moses 080 2.036 0.893 100.00 21.195 9.323 101.55 2.619 2.716 220.17
Moses 090 2.117 0.775 107.96 21.405 9.483 103.55 2.640 2.661 222.74
Moses 100 2.127 0.873 108.94 21.096 8.937 100.61 2.654 2.526 224.45

The developed applications represent three different check strategies that are imple-

mented in MOSES. As described in Section 6.5.4, for each operation which MOSES can

check, there is a separate class implemented in the framework library. According to the

first strategy, the hook for MOSES check is embedded into the framework library. In

128

6.6. MOSES EVALUATION

this case, the hook simply calls the check method of the corresponding operation class

and enforces the result of the check. For instance, this strategy is used for “Get Device

ID” operation check. In the second strategy, the hook is also placed into the framework

library, but in the corresponding operation classes the additional checks against Content-

Provider ’s shadow database are performed. A representative of this strategy is the check

of “Query ContentProvider” operation. In the third strategy, the hook is placed into

the core library while the check is performed in the framework library. The call of the

check method in the corresponding operation class is performed using Java reflection. The

strategy is used for “Write to a File” operation check. Thus, MsImeiTester, MsCpTester

and MsFsTester were developed to assess the overheads of these three strategies corre-

spondingly.

Comparing the results obtained for Stock Android, Taintdroid and Moses 000, we

can see that the main time overheads are added by MOSES operation checks. In fact,

Taintdroid adds 16.9% time overhead in case of “Get Device ID” operation, 21.4% for

“Query ContentProvider” and 0.4% in case of “Write to a File” operation, while MOSES

even with no ABAC rules adds 82.1%, 92.4% and 131.1% overheads correspondingly

comparing with Stock Android. Further, the results show that the most time consuming

operation check is “Write to a File”. Not surprisingly, because Java reflection used in the

third MOSES check strategy is a quite expensive operation.

As we expected, time overheads grow if we increase the number of rules. We can see

that Moses 000 adds 82.1%, 92.4% and 131.1% overheads. At the same time, Moses 100

adds 108.9%, 100.6% and 224.5%. We can see that relative overhead for “Get Device ID”

operation is higher than for “Query ContentProvider”. On the other hand, the absolute

overhead is 0.273 ms for the first operation and 0.868 ms for the second operation. Thus,

the small percentage in case of the second operation can be explained simply by the fact

that it takes more time to process the results of the operation in the test application.

The absolute values of overheads of our three operations between Moses 000 and

Moses 100 are 0.273 ms, 0.868 ms and 0.764 ms, respectively. The difference between

the values is connected with the fact that it takes different time to process target at-

tribute type in case of fixed and volatile targets. In case of fixed target, there is no need to

compare the attribute value with the pattern. On the contrary, in case of volatile target

MOSES has to compare the target value with the pattern in each relevant ABAC rule.

We assume that in a production system the total number of rules for a SP may be

higher then the maximum number considered in our experiments (because the number

of applications in a production system might be higher). At the same time, the number

of rules for a tuple (UID, operation) is smaller in real-world scenarios than considered

in our experiments. So as the tuple (UID, operation) serves as an index in our system,

the number of rule checks in a production system, which causes the main part of the

time overhead, will be smaller than in the considered number during the experiments.

129

CHAPTER 6. SUPPORTING SECURITY PROFILES IN ANDROID

Therefore, we assume that the main part of time overhead in a real-world system will be

caused not by the number of ABAC rules in the system but by the embedded MOSES

check itself. Unfortunately, this is the price we have to pay providing additional security

mechanisms.

130

Chapter 7

Conclusion

During the last several years the popularity of mobile phones has increased greatly, and

not the least role in the success of smartphones plays their ability to run third-party

applications. Being constantly carried around with their users, equipped with lots of

sensors and communicating with core user services as email, smartphones have become a

very valuable source of information about their holders. Yet, these data are of particular

interest not only to the legitimate owners of the devices. Mobile ad frameworks profile the

behavior of users (e.g., the places they visit) to provide targeted and customized ads; and

developers of third-party applications also embed the data-collection functionality [70,

84]. Moreover, there are also adversaries who develop their applications with malicious

purposes, i.e., to collect as much as possible information about device owners and to

perform malicious actions, e.g., send premium SMSs or turn the device into a bot. Not

surprisingly, in this situation the users have a strong motivation to safeguard their devices

from being misused and want to protect their privacy.

Understanding the fact that security is not a state but a process, in this thesis we

propose our improvements to security of mobile ecosystems, primarily Android. In this

chapter we summarize the key contributions done during the Ph.D. study and provide

the possible directions of the future work.

7.1 Dissertation Summary and Future Work

The contribution of this dissertation consists of four main parts: 1) we proposed an

approach that can detect repackaged Android applications in a fast way; 2) we developed

a static-dynamic analyzer of Android applications managed to work in case of dynamic

code updates; 3) we introduced an architecture of an attestation service for the Android

platform [147]; 4) we developed a lightweight system that supports security profiles for the

Android operating system [124, 150]. In addition to these contributions, we extensively

described the security model of the Android operating system.

131

CHAPTER 7. CONCLUSION

7.1.1 Fast Detection of Repackaged Android Applications

In this part of the thesis we presented an approach able to detect Android application

repackaging based on the apk resource files. We implemented our approach in a tool called

FSquaDRA. Leveraging hash files of resources already present in apks, FSquaDRA is

capable of fast pairwise apk comparison. It computes the Jaccard similarity score for

compared apks and classifies them as similar if substantial number of resource files are

the same in both packages.

We have evaluated practicality of FSquaDRA in two aspects: whether it gives re-

sults similar to the code-based app repackaging detection techniques, and whether it is

fast enough to handle significant number of apks. Our results are encouraging. The

FSquaDRA resource similarity score is strongly correlated with the AndroGuard code

similarity score, especially for the apks signed with different certificates, and thus, poten-

tially, plagiarized. FSquaDRA is also has good performance, as it was able to process a

dataset of more than 55000 apks on a laptop in less than 80 hours. Notice that our im-

plementation was not optimized for better performance, as it is single-threaded. Yet, the

approach can be easily parallelized using different parallelization algorithms for pairwise

comparison.

The obvious limitation of the current tool is that an adversary who is familiar with

the approach can easily change all resource files in the package to make his plagiarized

application virtually undetectable by FSquaDRA. Resource similarity metrics can be

hardened against this by looking into files themselves rather than just comparing the

digests, but it will lead to performance losses (which can become comparable with those

of the code-based repackaging detection techniques if implemented reasonably). The most

promising, to our point of view, is a hybrid approach, when repackaged applications are

detected using both approaches, code and resource comparison. We believe this is a very

interesting research direction.

Another interesting direction is to look into the data produced by FSquaDRA search-

ing for patterns and interesting findings, such as the fact that on average applications

signed with the same certificate have higher code similarity score than resource similarity

score, while this difference is not so evident in the apps signed with different certificates.

FSquaDRA opens an avenue of enhancement for app plagiarism detection algorithms,

and not only for Android. For other ecosystems, such as iOS or Windows Phone, that

request the developers to submit the full source code and resources before publishing apps

on the market our technique can be used to improve the on-market plagiarism detection

algorithms by complementing the code similarity-based approaches.

132

7.1. DISSERTATION SUMMARY AND FUTURE WORK

7.1.2 Static-Dynamic Analyser of Android Apps in the Presence of Reflection
and Dynamic Class Loading

Modern applications make an extensive use on the dynamic capabilities, namely reflection

and dynamic class loading, available in Android OS. Being adopted from Java, these

techniques in Android incur an additional threat because the loaded code receives the

same privileges as the loading one. Malware apps can then leverage on these capabilities

to conceal their malicious behavior from analyzers, while looking normal applications.

To address Issue 3 we presented StaDynA, a technique that interleaves static and

dynamic types of analysis in order to scrutinize application code in the presence of reflec-

tion and dynamic class loading, and an implementation of this technique on the Android

platform. Our approach makes it possible to compute the method call graph of an appli-

cation and to expand it by capturing additional modules loaded at runtime and additional

paths of execution obfuscated by reflection calls. In order to produce the expanded call

graph StaDynA does not require the modification of the application itself. The results

produced by StaDynA can then be fed to state of art analyzers in order to improve their

precision (for instance, for reachability analysis over the obtained MCG). Thus, StaDynA

may help malware analysts by increasing they ability to detect suspicious behavior.

However, our tool has space for future improvements. For StaDynA the coverage

(the percentage of triggered MOIs) is especially important. Currently our system uses

a semi-automatic approach. This means that a user (or the system) should trigger the

methods, which contain DCL and reflection calls. We evaluated StaDynA manually, and

we were not able to trigger all MOIs in the apps because our triggering is mostly GUI-

based (system events are also processed by StaDynA but it is difficult if not impossible

for a human analyst to produce a sufficient range of system events that might trigger a

MOI). Notice that only the triggering limits the coverage of MOIs.

As a way to improve StaDynA we plan to implement a fully automatic approach

for triggering. The first research proposals in this direction automate the user behavior

[83, 89, 120, 151], and they might be integrated with StaDynA. However, the system

events triggering still needs to be explored further.

Another possible direction to reduce the amount of manual work is to resolve the targets

of reflection calls statically (e.g., see [106]). The analysis performed in [74] shows that it is

possible to resolve automatically the targets of reflection calls in 59% of applications that

use reflection. At the same time, the analysis was performed for the “close world” scenario,

which is not realistic today, given that dynamic class loading is a popular technique for

modern apps. Additionally, currently reflection is used more heavily. While the article [74]

reports that only 61% of apps use reflection, our analysis performed on a similar dataset

shows that nowadays about 88% of applications use this technique. Additional benefit of

resolving reflection call targets at static time is the increase of code coverage.

133

CHAPTER 7. CONCLUSION

Usually, dynamic analysis allows an expert to explore only one execution path at a

time. However, dynamic traces may differ depending on the context of the execution,

e.g., some methods may contain calls invoked with parameters, according to which the

reflection call target may change. Therefore, another possible direction of improving

StaDynA is to incorporate information obtained during different runs of analysis.

StaDynA also has other limitations. Its analysis is based on the UID of an application.

However, it is possible in Android that several apps have the same UID. In this case,

StaDynA will also collect the information produced by other apps with the same UID.

At the same time, this information will not be used to complement MCG, and the calls

will be considered by StaDynA as suspicious. Currently, StaDynA is also unable to

download and analyze the code that is loaded directly into the memory [128]. However,

the hacks considered in [128] are not “officially” recommended to use because they avoid

the code optimization phase performed by Android.

7.1.3 Attestation Service for the Android Platform

The openness of Android has provided possibilities for other players (e.g., Amazon) to

run their own markets of applications. At the same time, the popularity of the platform

also attracts adversaries. The last reports show that even the users of the official Google

Play market cannot feel safe because of the lack of the strict vetting process there.

To address this issue we introduced TruStore (Trusted Store) to enhance app trust.

The main challenge for enabling a trusted store for Android is preservation of openness of

the ecosystem. Our solution is intended to build a secure infrastructure for provisioning

validated apps and their updates. We have designed and developed the client part of

the TruStore architecture, showing that implemented modifications to the Android

platform can enable this functionality. TruStore does not hinder the app management

process for end-users and developers, but it can provide the app trustworthiness assurance

for end-users and enterprises enabling the BYOD programs.

7.1.4 Supporting and Enforcing Security Profiles

To address Issue 1 we developed MOSES, a solution for separating modes of use in

smartphones. MOSES implements soft virtualization through controlled software isola-

tion. MOSES is the first solution to provide policy-based security containers implemented

completely via software. By acting at the system level we prevent applications to be able

to bypass our isolation. Basically, MOSES provides a possibility to separate different

aspects of user life activity specifying several Security Profiles on a smartphone. Such

solution provides a user to use the same device in different environemts, e.g., work and

personal, providing the control of the profiles to the interested parties.

With MOSES each security profile can be associated to one or more contexts that

134

7.1. DISSERTATION SUMMARY AND FUTURE WORK

determine when the profile become active. Contexts are defined in term of low level

features (e.g., time and location) and high level features (reputation, trust level, etc.).

Switching between Security Profiles can require users interaction or be automatic, efficient,

and transparent to the user basing on defined contexts. Both contexts and profiles can

be easily and dynamically specified by end users. For this purpose MOSES provides a

special GUI application. Profiles can be fine-grained to the level of single object (e.g.,

file, SMS) and single application.

We implemented MOSES and run a thorough set of experiments to evaluate its effi-

ciency and effectiveness. The experiments show the feasibility and accepted performance

of our solution for storage and energy consumption.

However, at the present moment MOSES has also some limitations. At first, fine-

grained policies and allowed applications are specified using the UID of an application.

Meanwhile, in Android it is possible that some applications share the same UID. Thus,

if we apply MOSES rules and restrictions to one application they automatically will

be extended to the other ones with same UID. Furthermore, some fine-grained policies

in MOSES are built on top of Taintdroid [70] functionality. Thus, MOSES inherits

the limitations of Taintdroid explained in Section 6.2. It should be also mentioned that

the applications that have root access to the system can bypass MOSES protection.

Thus, MOSES is ineffective in combating with the malware that obtains root access,

e.g., rootkits.

MOSES can also be improved in several aspects. For instance, to make the policy

specification process easier, a solution could be to embed into the system policy templates

that can be simply selected and associated to an application. It should be also mentioned

that currently MOSES does not separate system data (e.g., system configuration files)

and information on SD cards. In the future we plan to add this functionality to the

system. Moreover, performance overheads are also planned to be reduced considerably in

the future versions.

135

Bibliography

[1] ActionBarSherlock. Available Online. http://actionbarsherlock.com/.

[2] AndroGuard: Reverse engineering, Malware and goodware analysis of Android ap-

plications. Available Online. https://code.google.com/p/androguard/.

[3] Android-apktool: A tool for reverse engineering Android apk files. Available Online.

https://code.google.com/p/android-apktool/.

[4] Android application: Building and Running. Available Online. http://developer.

android.com/tools/building/index.html.

[5] Android Security Discussions: Multiple Certificates and Upgrade process.

Available Online. https://groups.google.com/forum/?fromgroups#!topic/

android-security-discuss/sY7Ormv3uWk.

[6] Android Security Overview. Available Online. http://source.android.com/

devices/tech/security/index.html.

[7] AndroidBest – Android market. http://androidbest.ru/.

[8] AndroidDrawer – Android market. http://www.androiddrawer.com/.

[9] AndroidLife – Android market. http://androidlife.ru/.

[10] Anruan – Android market. http://www.anruan.com/.

[11] AppsApk – Android market. http://www.appsapk.com/.

[12] Are Your Sales Reps Missing Important Sales Opportunities? Available On-

line. http://http://m.sybase.com/files/White_Papers/Solutions_SAP_Reps.

pdf/.

[13] AT&T Toggle. Available Online. https://www.wireless.

att.com//businesscenter/solutions/industry-solutions/

mobile-productivity-solutions/toggle.jsp.

[14] CaffeineMark 3.0 Benchmark. Available Online. http://www.benchmarkhq.ru/

cm30/.

137

http://actionbarsherlock.com/
https://code.google.com/p/androguard/
https://code.google.com/p/android-apktool/
http://developer.android.com/tools/building/index.html
http://developer.android.com/tools/building/index.html
https://groups.google.com/forum/?fromgroups#!topic/android-security-discuss/sY7Ormv3uWk
https://groups.google.com/forum/?fromgroups#!topic/android-security-discuss/sY7Ormv3uWk
http://source.android.com/devices/tech/security/index.html
http://source.android.com/devices/tech/security/index.html
http://androidbest.ru/
http://www.androiddrawer.com/
http://androidlife.ru/
http://www.anruan.com/
http://www.appsapk.com/
http://http://m.sybase.com/files/White_Papers/Solutions_SAP_Reps.pdf/
http://http://m.sybase.com/files/White_Papers/Solutions_SAP_Reps.pdf/
https://www.wireless.att.com//businesscenter/solutions/industry-solutions/mobile-productivity-solutions/toggle.jsp
https://www.wireless.att.com//businesscenter/solutions/industry-solutions/mobile-productivity-solutions/toggle.jsp
https://www.wireless.att.com//businesscenter/solutions/industry-solutions/mobile-productivity-solutions/toggle.jsp
http://www.benchmarkhq.ru/cm30/
http://www.benchmarkhq.ru/cm30/

BIBLIOGRAPHY

[15] capabilities(7) - Linux man page. Available Online. http://linux.die.net/man/

7/capabilities.

[16] Divide webpage. Available Online. http://www.divide.com/.

[17] Dual Persona Definition. Available Online. http://searchconsumerization.

techtarget.com/definition/Dual-persona.

[18] F-Droid – Android market. https://f-droid.org/.

[19] Fixmo SafeZone: Corporate Data Protection. Available Online. http://fixmo.

com/products/safezone.

[20] Gartner Says Smartphone Sales Accounted for 55 Percent of Overall Mobile Phone

Sales in Third Quarter of 2013. Available Online. http://www.gartner.com/

newsroom/id/2623415.

[21] Good BYOD solutions. Available Online. http://www1.good.com/

mobility-management-solutions/bring-your-own-device.

[22] Google Play – Android official market. https://play.google.com/store/apps.

[23] Jar File Specification. Available Online. http://docs.oracle.com/javase/6/

docs/technotes/guides/jar/jar.html.

[24] jarsigner - JAR Signing and Verification Tool. Available Online. http://docs.

oracle.com/javase/6/docs/technotes/tools/windows/jarsigner.html.

[25] Jdk 1.1 new feature summary. Available Online. http://www.tns.lcs.mit.edu/

manuals/java-1.1.1/relnotes/features.html.

[26] Mobile Virtualization. Available Online. http://www.redbend.com/en/

products-services/mobile-virtualization.

[27] monkeyrunner. Available Online. http://developer.android.com/tools/help/

monkeyrunner_concepts.html.

[28] MOSES project. Available Online. http://mosesdroid.org/.

[29] mount(2) - Linux man page. Available Online. http://linux.die.net/man/2/

mount.

[30] NitroDesk TouchDown. Available Online. http://www.nitrodesk.com/

TouchDown.aspx.

[31] OKL4 Microvisor. Available Online. http://www.ok-labs.com/products/

okl4-microvisor.

138

http://linux.die.net/man/7/capabilities
http://linux.die.net/man/7/capabilities
http://www.divide.com/
http://searchconsumerization.techtarget.com/definition/Dual-persona
http://searchconsumerization.techtarget.com/definition/Dual-persona
https://f-droid.org/
http://fixmo.com/products/safezone
http://fixmo.com/products/safezone
http://www.gartner.com/newsroom/id/2623415
http://www.gartner.com/newsroom/id/2623415
http://www1.good.com/mobility-management-solutions/bring-your-own-device
http://www1.good.com/mobility-management-solutions/bring-your-own-device
https://play.google.com/store/apps
http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/jarsigner.html
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/jarsigner.html
http://www.tns.lcs.mit.edu/manuals/java-1.1.1/relnotes/features.html
http://www.tns.lcs.mit.edu/manuals/java-1.1.1/relnotes/features.html
http://www.redbend.com/en/products-services/mobile-virtualization
http://www.redbend.com/en/products-services/mobile-virtualization
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://mosesdroid.org/
http://linux.die.net/man/2/mount
http://linux.die.net/man/2/mount
http://www.nitrodesk.com/TouchDown.aspx
http://www.nitrodesk.com/TouchDown.aspx
http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor

BIBLIOGRAPHY

[32] PandaApp – Android market. http://android.pandaapp.com/.

[33] Permissions for System Apps (not in /data/system/packages.xml?). Forum

Discussion. https://groups.google.com/forum/#!topic/android-developers/

ZOrtSBG5_XA.

[34] Security Tips. Available Online. http://developer.android.com/training/

articles/security-tips.html.

[35] SlideME – Android market. http://slideme.org/.

[36] Smali: An assembler/disassembler for Android’s dex format. Available Online.

https://code.google.com/p/smali/.

[37] System Permissions. Available Online. http://developer.android.com/guide/

topics/security/permissions.html.

[38] The Android Open Source Project. Available Online. http://source.android.

com/index.html.

[39] Ubuntu Manuals - PAM namespaces. Available Online. http://manpages.ubuntu.

com/manpages/maverick/man8/pam_namespace.8.html.

[40] Unisys Establishes a Bring Your Own Device (BYOD) Policy. Avail-

able Online. http://www.insecureaboutsecurity.com/2011/03/14/unisys_

establishes_a_bring_your_own_device_byod_policy/.

[41] Filesystem Hierarchy Standard, version 2.3. Available Online, January 2004. http:

//www.pathname.com/fhs/pub/fhs-2.3.html.

[42] Yuvraj Agarwal and Malcolm Hall. ProtectMyPrivacy: Detecting and Mitigating

Privacy Leaks on iOS Devices Using Crowdsourcing. In Proceeding of the 11th

Annual International Conference on Mobile Systems, Applications, and Services,

MobiSys ’13, pages 97–110, 2013.

[43] Musheer Ahmed and Mustaque Ahamad. Protecting Health Information on Mobile

Devices. In Proceedings of the Second ACM Conference on Data and Application

Security and Privacy, CODASPY ’12, pages 229–240, 2012.

[44] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason

Nieh. Cells: A Virtual Mobile Smartphone Architecture. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages

173–187, 2011.

[45] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. PScout: Analyzing

the Android Permission Specification. In Proceedings of the 2012 ACM Conference

on Computer and Communications Security, CCS ’12, pages 217–228, 2012.

139

http://android.pandaapp.com/
https://groups.google.com/forum/#!topic/android-developers/ZOrtSBG5_XA
https://groups.google.com/forum/#!topic/android-developers/ZOrtSBG5_XA
http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/training/articles/security-tips.html
http://slideme.org/
https://code.google.com/p/smali/
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://source.android.com/index.html
http://source.android.com/index.html
http://manpages.ubuntu.com/manpages/maverick/man8/pam_namespace.8.html
http://manpages.ubuntu.com/manpages/maverick/man8/pam_namespace.8.html
http://www.insecureaboutsecurity.com/2011/03/14/unisys_establishes_a_bring_your_own_device_byod_policy/
http://www.insecureaboutsecurity.com/2011/03/14/unisys_establishes_a_bring_your_own_device_byod_policy/
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://www.pathname.com/fhs/pub/fhs-2.3.html

BIBLIOGRAPHY

[46] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp

von Styp-Rekowsky. AppGuard – Enforcing User Requirements on Android Apps.

In Proceedings of the 19th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS’13, pages 543–548, 2013.

[47] Guangdong Bai, Liang Gu, Tao Feng, Yao Guo, and Xiangqun Chen. Context-

Aware Usage Control for Android. In Proceedings of the Conference on Security

and Privacy in Communication Networks, SecureComm, pages 326–343, 2010.

[48] Ken Barr, Prashanth Bungale, Stephen Deasy, Viktor Gyuris, Perry Hung, Craig

Newell, Harvey Tuch, and Bruno Zoppis. The VMware Mobile Virtualization Plat-

form: Is That a Hypervisor in Your Pocket? SIGOPS Oper. Syst. Rev., 44(4):124–

135, December 2010.

[49] Alastair R Beresford, Andrew Rice, and Nicholas Skehin. MockDroid: Trading

Privacy for Application Functionality on Smartphones. In Proceedings of the 12th

Workshop on Mobile Computing Systems and Applications, HotMobile ’11, pages

49–54, 2011.

[50] Daniel G. Bobrow, Richard P. Gabriel, and Jon L. White. Object-oriented program-

ming. chapter CLOS in Context: The Shape of the Design Space, pages 29–61. MIT

Press, 1993.

[51] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming

reflection: Aiding static analysis in the presence of reflection and custom class load-

ers. In Proceedings of the 33rd International Conference on Software Engineering,

pages 241–250. ACM, 2011.

[52] Jeff Bogda and Ambuj Singh. Can a Shape Analysis Work at Run-time? In Proceed-

ings of the 2001 Symposium on JavaTM Virtual Machine Research and Technology

Symposium - Volume 1, JVM’01, pages 2–2, 2001.

[53] Joseph Bradley, Jeff Loucks, James Macaulay, Richard Medcalf, and Lauren

Buckalew. BYOD: A Global Perspective. Harnessing Employee-Led Innovation.

Available Online, 2012. http://www.cisco.com/web/about/ac79/docs/re/BYOD_

Horizons-Global.pdf.

[54] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza

Sadeghi, and Bhargava Shastry. Towards taming privilege-escalation attacks on

Android. In Proceedings of the 19th Annual Network & Distributed System Security

Symposium, NDSS ’12, 2012.

[55] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza

Sadeghi, and Bhargava Shastry. Practical and Lightweight Domain Isolation on

140

http://www.cisco.com/web/about/ac79/docs/re/BYOD_Horizons-Global.pdf
http://www.cisco.com/web/about/ac79/docs/re/BYOD_Horizons-Global.pdf

BIBLIOGRAPHY

Android. In Proceedings of the 1st ACM Workshop on Security and Privacy in

Smartphones and Mobile Devices, SPSM ’11, pages 51–62, 2011.

[56] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flexible and Fine-Grained

Mandatory Access Control on Android for Diverse Security and Privacy Policies. In

Proceedings of the 22nd USENIX Conference on Security, SEC’13, pages 131–146,

2013.

[57] Hao Chen, David Wagner, and Drew Dean. Setuid Demystified. In Proceedings of

the 11th USENIX Security Symposium, pages 171–190, 2002.

[58] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing

inter-application communication in Android. In Proceedings of the 9th International

Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages 239–

252, 2011.

[59] Fred Chung. Custom Class Loading in Dalvik. Available

Online. http://android-developers.blogspot.it/2011/07/

custom-class-loading-in-dalvik.html.

[60] Rudi Cilibrasi and Paul M. B. Vitányi. Clustering by compression. IEEE Transac-

tions on Information Theory, 51:1523–1545, 2005.

[61] Christian Collberg, Ginger Myles, and Andrew Huntwork. Sandmark–A Tool for

Software Protection Research. IEEE Security and Privacy, 1(4):40–49, July 2003.

[62] Mauro Conti, Bruno Crispo, Earlence Fernandes, and Yury Zhauniarovich. CRêPE:

A system for enforcing fine-grained context-related policies on Android. IEEE Trans-

actions on Information Forensics and Security, 7(5):1426–1438, 2012.

[63] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the Clones: Detecting

Cloned Applications on Android Markets. In Proceedings of the 17th European

Symposium on Research in Computer Security, ESORICS ’12, pages 37–54, 2012.

[64] Jonathan Crussell, Clint Gibler, and Hao Chen. Scalable SEmantics-Based Detec-

tion of Similar Android Applications. In Proceedings of the 18th European Sympo-

sium on Research in Computer Security, ESORICS ’13, 2013.

[65] Christoffer Dall and Jason Nieh. KVM for ARM. In Proceedings of the 12th Annual

Linux Symposium, 2010.

[66] Anthony Desnos. Android: Static Analysis Using Similarity Distance. In Proceedings

of the 2012 45th Hawaii International Conference on System Sciences, HICSS ’12,

pages 5394–5403, 2012.

141

http://android-developers.blogspot.it/2011/07/custom-class-loading-in-dalvik.html
http://android-developers.blogspot.it/2011/07/custom-class-loading-in-dalvik.html

BIBLIOGRAPHY

[67] Technische Universitat Dresden and University of Technology Berlin. L4Android.

Available Online. http://l4android.org/.

[68] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An

empirical study of cryptographic misuse in android applications. In Proceedings of

the 2013 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’13, pages 73–84, 2013.

[69] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. PiOS: De-

tecting Privacy Leaks in iOS Applications. In Proceedings of the 18th Annual Net-

work & Distributed System Security Symposium, NDSS ’11, 2011.

[70] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,

Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An Information-flow Tracking

System for Realtime Privacy Monitoring on Smartphones. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implementation, OSDI’10,

pages 1–6, 2010.

[71] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A Study

of Android Application Security. In Proceedings of the 20th USENIX Conference

on Security, SEC’11, pages 21–21, 2011.

[72] William Enck, Machigar Ongtang, and Patrick McDaniel. Understanding Android

Security. IEEE Security and Privacy, 7(1):50–57, 2009.

[73] F-Secure. Trojan:Android/FakeNotify Gets Updated. Available Online, Dec.

2011. http://www.f-secure.com/weblog/archives/00002291.html?tduid=

f57e2769518f081721ffca586e797b2a.

[74] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.

Android permissions demystified. In Proceedings of the 18th ACM Conference on

Computer and Communications Security, CCS ’11, pages 627–638, 2011.

[75] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and

David Wagner. Android Permissions: User Attention, Comprehension, and Be-

havior. In Proceedings of the Eighth Symposium on Usable Privacy and Security,

SOUPS ’12, pages 3:1–3:14, 2012.

[76] Denis Feth and Christian Jung. Context-Aware, Data-Driven Policy Enforcement

for Smart Mobile Devices in Business Environments. In Proceedings of Security and

Privacy in Mobile Information and Communication Systems, MobiSec ’12, pages

69–80, 2012.

142

http://l4android.org/
http://www.f-secure.com/weblog/archives/00002291.html?tduid=f57e2769518f081721ffca586e797b2a
http://www.f-secure.com/weblog/archives/00002291.html?tduid=f57e2769518f081721ffca586e797b2a

BIBLIOGRAPHY

[77] Denis Feth and Alexander Pretschner. Flexible Data-Driven Security for Android. In

Proceedings of the 2012 IEEE Sixth International Conference on Software Security

and Reliability, SERE ’12, pages 41 –50, 2012.

[78] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey. Modeling and Enhancing Androids

Permission System. In Proceedings of the 17th European Symposium on Research

in Computer Security (ESORICS ’13), volume 7459 of Lecture Notes in Computer

Science, pages 1–18, 2012.

[79] Olga Gadyatskaya, Fabio Massacci, and Yury Zhauniarovich. Security in the Fire-

fox OS and Tizen Mobile Platforms. IEEE Computer, (Special Issue on Mobile

Application Security), 2014. to appear.

[80] Aleksandar Gargenta. Deep Dive into Android IPC/Binder Framework.

Available Online. https://thenewcircle.com/s/post/1340/Deep_Dive_Into_

Binder_Presentation.htm.

[81] Marko Gargenta. Android Security Underpinnings. Available Online. https://

thenewcircle.com/s/post/1518/Android_Security_Underpinnings.htm.

[82] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural De-

tection of Android Malware Using Embedded Call Graphs. In Proceedings of the

2013 ACM Workshop on Artificial Intelligence and Security, AISec ’13, pages 45–54,

2013.

[83] Andrea Gianazza, Federico Maggi, Aristide Fattori, Lorenzo Cavallaro, and Stefano

Zanero. PuppetDroid: A User-Centric UI Exerciser for Automatic Dynamic Analysis

of Similar Android Applications. Technical report, 2014.

[84] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. AndroidLeaks:

Automatically Detecting Potential Privacy Leaks in Android Applications on a

Large Scale. In Proceedings of the 5th International Conference on Trust and Trust-

worthy Computing, TRUST’12, pages 291–307, 2012.

[85] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and Heesook

Choi. AdRob: examining the landscape and impact of Android application plagia-

rism. In Proceeding of the 11th Annual International Conference on Mobile Systems,

Applications, and Services, MobiSys ’13, pages 431–444, 2013.

[86] Peter Gilbert, Byung-Gon Chun, Landon P. Cox, and Jaeyeon Jung. Vision: Au-

tomated Security Validation of Mobile Apps at App Markets. In Proceedings of the

Second International Workshop on Mobile Cloud Computing and Services, MCS ’11,

pages 21–26, 2011.

143

https://thenewcircle.com/s/post/1340/Deep_Dive_Into_Binder_Presentation.htm
https://thenewcircle.com/s/post/1340/Deep_Dive_Into_Binder_Presentation.htm
https://thenewcircle.com/s/post/1518/Android_Security_Underpinnings.htm
https://thenewcircle.com/s/post/1518/Android_Security_Underpinnings.htm

BIBLIOGRAPHY

[87] Akhilesh Gupta, Anupam Joshi, and Gopal Pingali. Enforcing Security Policies in

Mobile Devices Using Multiple Personas. In MobiQuitous, volume 73 of Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommuni-

cations Engineering, pages 297–302, 2010.

[88] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn Song.

Juxtapp: A Scalable System for Detecting Code Reuse Among Android Applica-

tions. In Proceedings of the 9th International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, DIMVA’12, pages 62–81, 2013.

[89] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.

PUMA: Programmable UI-Automation for Large-Scale Dynamic Analysis of Mo-

bile Apps. In Proceedings of the 12th International Conference on Mobile Systems,

Applications, and Services (MobiSys’14), 2014. to appear.

[90] Gernot Heiser. Virtualization for Embedded Systems. Technical report, Open

Kernel Labs, Inc., 2007. http://www.ok-labs.com/_assets/image_library/

virtualization-for-embedded-systems1983.pdf.

[91] Martin Hirzel, Amer Diwan, and Michael Hind. Pointer Analysis in the Presence

of Dynamic Class Loading. In Proceedings of the European Conference on Object-

Oriented Programming, volume 3086 of LNCS, pages 96–122, 2004.

[92] Martin Hirzel, Daniel von Dinklage, Amer Diwan, and Michael Hind. Fast Online

Pointer Analysis. ACM Tran. on Programming Languages and Systems, 29(2), 2007.

[93] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David

Wetherall. These Aren’t the Droids You’re Looking For: Retrofitting Android to

Protect Data from Imperious Applications. In Proceedings of the 18th ACM Con-

ference on Computer and Communications Security, CCS ’11, pages 639–652, 2011.

[94] Cuixiong Hu and Iulian Neamtiu. Automating GUI Testing for Android Applica-

tions. In Proceedings of the 6th International Workshop on Automation of Software

Test, AST ’11, pages 77–83, 2011.

[95] Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. Large-scale malware indexing using

function-call graphs. In Proceedings of the 16th ACM Conference on Computer and

Communications Security, CCS ’09, 2009.

[96] Heqing Huang, Sencun Zhu, Peng Liu, and Dinghao Wu. A Framework for Eval-

uating Mobile App Repackaging Detection Algorithms. In Proceedings of the 6th

International Conference on Trust and Trustworthy Computing, TRUST ’13, pages

169–186, 2013.

144

http://www.ok-labs.com/_assets/image_library/virtualization-for-embedded-systems1983.pdf
http://www.ok-labs.com/_assets/image_library/virtualization-for-embedded-systems1983.pdf

BIBLIOGRAPHY

[97] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-Min Ryu,

Seong-Yeol Park, and Chul-Ryun Kim. Xen on ARM: System Virtualization Using

Xen Hypervisor for ARM-Based Secure Mobile Phones. In Proceedings of the 5th

Consumer Communications and Newtork Conference, CCNC ’08, pages 257 –261,

2008.

[98] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh

Reddy, Jeffrey S. Foster, and Todd Millstein. Dr. Android and Mr. Hide: Fine-

grained Permissions in Android Applications. In Proceedings of the Second ACM

Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM ’12,

pages 3–14, 2012.

[99] Xuxian Jiang. Security Alert: New Stealthy Android Spyware – Plankton – Found

in Official Android Market. Available Online, June 2011. http://www.csc.ncsu.

edu/faculty/jiang/Plankton/.

[100] Mona Erfani Joorabchi and Ali Mesbah. Reverse Engineering iOS Mobile Applica-

tions. In Proceedings of the 2012 19th Working Conference on Reverse Engineering,

WCRE ’12, pages 177–186, 2012.

[101] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel,

and Giovanni Vigna. Revolver: An Automated Approach to the Detection of

Evasiveweb-based Malware. In Proceedings of the 22nd USENIX Conference on

Security, SEC’13, pages 637–652, 2013.

[102] Palanivel Balaji Kodeswaran, Vikrant Nandakumar, Shalini Kapoor, Pavan Kama-

raju, Anupam Joshi, and Sougata Mukherjea. Securing Enterprise Data on Smart-

phones Using Run Time Information Flow Control. In Proceedings of the 13th IEEE

International Conference on Mobile Data Management, MDM ’12, pages 300–305,

2012.

[103] Dean Kramer, Anna Kocurova, Samia Oussena, Tony Clark, and Peter Komisar-

czuk. An Extensible, Self Contained, Layered Approach to Context Acquisition.

In Proceedings of the Third International Workshop on Middleware for Pervasive

Mobile and Embedded Computing, M-MPAC ’11, pages 6:1–6:7, 2011.

[104] Matthias Lange, Steffen Liebergeld, Adam Lackorzynski, Alexander Warg, and

Michael Peter. L4Android: A Generic Operating System Framework for Secure

Smartphones. In Proceedings of the 1st ACM Workshop on Security and Privacy in

Smartphones and Mobile Devices, SPSM ’11, pages 39–50, 2011.

[105] Sheng Liang and Gilad Bracha. Dynamic Class Loading in the Java Virtual Ma-

chine. In Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented

145

http://www.csc.ncsu.edu/faculty/jiang/Plankton/
http://www.csc.ncsu.edu/faculty/jiang/Plankton/

BIBLIOGRAPHY

Programming, Systems, Languages, and Applications, OOPSLA ’98, pages 36–44,

1998.

[106] Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection Analysis for Java.

In Proceedings of the Third Asian Conference on Programming Languages and Sys-

tems, APLAS’05, pages 139–160, 2005.

[107] Hiroshi Lockheimer. Android and Security. http://googlemobile.blogspot.com/

2012/02/android-and-security.html, February 2012. Available Online.

[108] Alex Lockwood. Binders & Window Tokens. Available Online, July 2013. http:

//www.androiddesignpatterns.com/2013/07/binders-window-tokens.html.

[109] Denis Maslennikov. IT Threat Evolution: Q1 2013. Available Online,

May 2013. http://www.securelist.com/en/analysis/204792292/IT_Threat_

Evolution_Q1_2013.

[110] Roberto Mijat and Andy Nightingale. Virtualization is Coming to a Platform

Near You. Technical report, ARM, 2010. http://www.arm.com/files/pdf/

System-MMU-Whitepaper-v8.0.pdf.

[111] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending Android

Permission Model and Enforcement with User-Defined Runtime Constraints. In

Proceedings of the 5th ACM Symposium on Information, Computer and Communi-

cations Security, ASIACCS ’10, pages 328–332, 2010.

[112] John Oberheide. Dissecting the Android Bouncer. Available Online, 2012. http:

//jon.oberheide.org/files/summercon12-bouncer.pdf.

[113] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel.

Semantically rich application-centric security in android. In Proceedings of the 2009

Annual Computer Security Applications Conference, ACSAC ’09, pages 340–349,

2009.

[114] Pandalabs. New Malware Attack through Google Play. Avail-

able Online, Feb. 2014. http://pandalabs.pandasecurity.com/

new-malware-attack-through-google-play/.

[115] Ketan Parmar. In Depth: Android Package Manager and Package In-

staller. Available Online, October 2012. http://www.kpbird.com/2012/10/

in-depth-android-package-manager-and.html.

[116] Nicole Perlroth and Nick Bilton. Mobile Apps Take Data Without Permission.

Available Online, February 2012. http://bits.blogs.nytimes.com/2012/02/15/

google-and-mobile-apps-take-data-books-without-permission/?_r=0.

146

http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://www.androiddesignpatterns.com/2013/07/binders-window-tokens.html
http://www.androiddesignpatterns.com/2013/07/binders-window-tokens.html
http://www.securelist.com/en/analysis/204792292/IT_Threat_Evolution_Q1_2013
http://www.securelist.com/en/analysis/204792292/IT_Threat_Evolution_Q1_2013
http://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf
http://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf
http://jon.oberheide.org/files/summercon12-bouncer.pdf
http://jon.oberheide.org/files/summercon12-bouncer.pdf
http://pandalabs.pandasecurity.com/new-malware-attack-through-google-play/
http://pandalabs.pandasecurity.com/new-malware-attack-through-google-play/
http://www.kpbird.com/2012/10/in-depth-android-package-manager-and.html
http://www.kpbird.com/2012/10/in-depth-android-package-manager-and.html
http://bits.blogs.nytimes.com/2012/02/15/google-and-mobile-apps-take-data-books-without-permission/?_r=0
http://bits.blogs.nytimes.com/2012/02/15/google-and-mobile-apps-take-data-books-without-permission/?_r=0

BIBLIOGRAPHY

[117] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and

Giovanni Vigna. Execute This! Analyzing Unsafe and Malicious Dynamic Code

Loading in Android Applications. In Proceedings of the 21st Annual Network &

Distributed System Security Symposium, NDSS ’14, 2014.

[118] Rahul Potharaju, Andrew Newell, Cristina Nita-Rotaru, and Xiangyu Zhang. Pla-

giarizing smartphone applications: Attack strategies and defense techniques. In

Proceedings of the 4th International Conference on Engineering Secure Software

and Systems, ESSoS’12, pages 106–120, 2012.

[119] Emil Protalinski. Warning: New Android malware tricks users with

real Opera Mini. Available Online, 2012 July. http://www.zdnet.com/

warning-new-android-malware-tricks-users-with-real-opera-mini-7000001586/.

[120] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: Automatic Se-

curity Analysis of Smartphone Applications. In Proceedings of the Third ACM

Conference on Data and Application Security and Privacy, CODASPY ’13, pages

209–220, 2013.

[121] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. DroidChameleon: Evaluating An-

droid Anti-malware Against Transformation Attacks. In Proceedings of the 8th

ACM SIGSAC Symposium on Information, Computer and Communications Secu-

rity, ASIA CCS ’13, pages 329–334, 2013.

[122] Steven B. Roosa and Stephen Schultze. Trust Darknet: Control and Compromise

in the Internet’s Certificate Authority Model. IEEE Transactions on Internet Com-

puting, 17(3):18–25, 2013.

[123] Giovanni Russello, Mauro Conti, Bruno Crispo, and Earlence Fernandes. MOSES:

Supporting Operation Modes on Smartphones. In Proceedings of the 17th ACM

Symposium on Access Control Models and Technologies, SACMAT ’12, pages 3–12,

2012.

[124] Giovanni Russello, Mauro Conti, Bruno Crispo, Earlence Fernandes, and Yury Zhau-

niarovich. Demonstrating the Effectiveness of MOSES for Separation of Execution

Modes. In Proceedings of the 2012 ACM Conference on Computer and Communi-

cations Security, CCS ’12, pages 998–1000, 2012.

[125] Giovanni Russello, Bruno Crispo, Earlence Fernandes, and Yury Zhauniarovich.

YAASE: Yet Another Android Security Extension. In Proceedings of the Third

IEEE International Conference on Privacy, Security, Risk and Trust and Third

International Conference on Social Computing, SocialCom/PASSAT, pages 1033–

1040, 2011.

147

http://www.zdnet.com/warning-new-android-malware-tricks-users-with-real-opera-mini-7000001586/
http://www.zdnet.com/warning-new-android-malware-tricks-users-with-real-opera-mini-7000001586/

BIBLIOGRAPHY

[126] Giovanni Russello, Arturo Blas Jimenez, Habib Naderi, and Wannes van der Mark.

FireDroid: Hardening Security in Almost-stock Android. In Proceedings of the 29th

Annual Computer Security Applications Conference, ACSAC ’13, pages 319–328,

2013.

[127] Thorsten Schreiber. Android Binder. Android Interprocess Communication. Mas-

ter’s thesis, Ruhr University Bochum, 2011.

[128] Patrick Schulz. Code Protection in Android. Available Online,

2012. http://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/

2012-Schulz-Code_Protection_in_Android.pdf.

[129] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, Shlomi Dolev, and Chanan

Glezer. Google Android: A Comprehensive Security Assessment. IEEE Security

and Privacy, 8:35–44, 2010.

[130] Stephen Smalley and Robert Craig. Security Enhanced (SE) Android: Bringing

Flexible MAC to Android. In Proceedings of the 20th Annual Network and Dis-

tributed System Security Symposium, NDSS ’13, 2013.

[131] Brian Cantwell Smith. Procedural Reflection in Programming Languages. PhD the-

sis, Massachusetts Institute of Technology, Laboratory for Computer Science, 1982.

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-272.pdf.

[132] Dennis Sosnoski. Java programming dynamics, Part 1: Java classes and class

loading. Available Online. http://www.ibm.com/developerworks/library/

j-dyn0429/.

[133] Symantec. Securing the Mobile App Market: How Code Signing Can Bolster Secu-

rity for Mobile Applications. White paper, 2012.

[134] Enea Android team. The Android boot process from power on. http://www.

androidenea.com/2009/06/android-boot-process-from-power-on.html, June

2009. Available Online.

[135] TrendMicro. Mobile App Reputation Service, 2011. http://www.trendmicro.co.

uk/media/ds/mobile-app-reputation-service-datasheet-en.pdf.

[136] Bart van Wissen, Nicholas Palmer, Roelof Kemp, Thilo Kielmann, and Henri Bal.

ContextDroid: an Expression-Based Context Framework for Android. In Proceedings

of PhoneSense 2010, pages 1–5, 2010.

[137] Timothy Vidas and Nicolas Christin. Sweetening Android Lemon Markets: Mea-

suring and Combating Malware in Application Marketplaces. In Proceedings of the

148

http://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-Code_Protection_in_Android.pdf
http://net.cs.uni-bonn.de/fileadmin/user_upload/plohmann/2012-Schulz-Code_Protection_in_Android.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-272.pdf
http://www.ibm.com/developerworks/library/j-dyn0429/
http://www.ibm.com/developerworks/library/j-dyn0429/
http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html
http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html
http://www.trendmicro.co.uk/media/ds/mobile-app-reputation-service-datasheet-en.pdf
http://www.trendmicro.co.uk/media/ds/mobile-app-reputation-service-datasheet-en.pdf

BIBLIOGRAPHY

Third ACM Conference on Data and Application Security and Privacy, CODASPY

’13, pages 197–208, 2013.

[138] Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke Lee. Jekyll on iOS:

When Benign Apps Become Evil. In Proceedings of the 22Nd USENIX Conference

on Security, SEC’13, pages 559–572, 2013.

[139] Christina Warren. Google Play Hits 1 Million Apps. Available Online, July 2013.

http://mashable.com/2013/07/24/google-play-1-million/.

[140] Erik Ramsgaard Wognsen and Henrik Søndberg Karlsen. Static Analysis of Dalvik

Bytecode and Reflection in Android. Master’s thesis, Aalborg University, 2012.

[141] Rubin Xu, Hassen Säıdi, and Ross Anderson. Aurasium: Practical Policy Enforce-

ment for Android Applications. In Proceedings of the 21st USENIX Conference on

Security Symposium, Security’12, pages 27–27, 2012.

[142] Yang Xu, Felix Bruns, Elizabeth Gonzalez, Shadi Traboulsi, Klaus Mott, and Attila

Bilgic. Performance Evaluation of Para-virtualization on Modern Mobile Phone

Platform. In Proceedings of the International Conference on Computer, Electrical,

and Systems Science, and Engineering, ICCESSE ’10, 2010.

[143] Karim Yaghmour. Extending Android HAL. Available Online, September 2012.

http://www.opersys.com/blog/extending-android-hal.

[144] Karim Yaghmour. Embedded Android. O’Reilly Media, Inc., 2013.

[145] Lok Kwong Yan and Heng Yin. DroidScope: Seamlessly Reconstructing the OS

and Dalvik Semantic Views for Dynamic Android Malware Analysis. In Proceedings

of the 21st USENIX Conference on Security Symposium, Security’12, pages 29–29,

2012.

[146] Eric Yuan and Jin Tong. Attributed Based Access Control (ABAC) for Web Services.

In Proceedings of the IEEE International Conference on Web Services, ICWS ’05,

pages 561–569, 2005.

[147] Yury Zhauniarovich, Olga Gadyatskaya, and Bruno Crispo. DEMO: Enabling

Trusted Stores for Android. In Proceedings of the 2013 ACM SIGSAC Conference

on Computer & Communications Security, CCS ’13, pages 1345–1348, 2013.

[148] Yury Zhauniarovich, Olga Gadyatskaya, and Bruno Crispo. TruStore: Implement-

ing a Trusted Store for Android. Technical Report DISI-14-010, Department of

Engineering and Computer Science, University of Trento, May 2014.

149

http://mashable.com/2013/07/24/google-play-1-million/
http://www.opersys.com/blog/extending-android-hal

BIBLIOGRAPHY

[149] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco La Spina, and

Ermanno Moser. FSquaDRA: Fast Detection of Repackaged Applications. In Pro-

ceedings of the 28th Annual IFIP WG 11.3 Working Conference on Data and Ap-

plications Security and Privacy, DBSec ’14, pages 131–146, 2014. to appear.

[150] Yury Zhauniarovich, Giovanni Russello, Mauro Conti, Bruno Crispo, and Earlence

Fernandes. MOSES: Supporting and Enforcing Security Profiles on Smartphones.

IEEE Transactions on Dependable and Secure Computing, 11(3):211–223, May 2014.

[151] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han,

and Wei Zou. SmartDroid: An Automatic System for Revealing UI-based Trigger

Conditions in Android Applications. In Proceedings of the Second ACM Workshop

on Security and Privacy in Smartphones and Mobile Devices, SPSM ’12, pages 93–

104, 2012.

[152] Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. DroidAlarm: An All-sided

Static Analysis Tool for Android Privilege-escalation Malware. In Proceedings of

the 8th ACM SIGSAC Symposium on Information, Computer and Communications

Security, ASIA CCS ’13, pages 353–358, 2013.

[153] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. Fast, Scal-

able Detection of ”Piggybacked” Mobile Applications. In Proceedings of the Third

ACM Conference on Data and Application Security and Privacy, CODASPY ’13,

pages 185–196, 2013.

[154] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting Repackaged Smart-

phone Applications in Third-party Android Marketplaces. In Proceedings of the Sec-

ond ACM Conference on Data and Application Security and Privacy, CODASPY

’12, pages 317–326, 2012.

[155] Yajin Zhou and Xuxian Jiang. An Analysis of the AnserverBot Trojan. Avail-

able Online, September 2011. http://www.csc.ncsu.edu/faculty/jiang/pubs/

AnserverBot_Analysis.pdf.

[156] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization and

Evolution. In Proceedings of the 2012 IEEE Symposium on Security and Privacy,

SP ’12, pages 95–109, 2012.

[157] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, You, Get Off of My

Market: Detecting Malicious Apps in Official and Alternative Android Markets. In

Proceedings of the 19th Annual Network & Distributed System Security Symposium,

NDSS ’12, 2012.

150

http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf

BIBLIOGRAPHY

[158] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and V.W. Freeh. Taming Information-

Stealing Smartphone Applications (on Android). In Proceedings of the 4th Interna-

tional Conference on Trust and Trustworthy Computing, TRUST’11, pages 93–107,

2011.

151

	Introduction
	The Importance of Data Stored on Mobile Devices
	Problem Statement
	Thesis Contributions
	Fast Detection of Repackaged Android Applications
	Static-Dynamic Analyser of Android Apps in the Presence of Reflection and Dynamic Class Loading
	Attestation Service for the Android Platform
	Supporting and Enforcing Security Profiles in Android

	Accepted Papers
	Thesis Structure

	Android Security
	Android Stack
	Android General Security Description
	Android Security on the Linux Kernel Level
	Application Sandboxing
	Permission Enforcement on the Linux Kernel level

	Android Security on the Native Userspace Level
	Android Booting Process
	Android Filesystem
	Native Executables Protection

	Android Security on the Application Framework Level
	Android Binder Framework
	Android Permissions
	Permission Enforcement on the Application Framework level

	Android Security on the Application Level
	Application Components
	Permissions on the Application Level
	Application Signing Process

	Fast Detection of Repackaged Android Applications
	The Problem of Application Repackaging
	Our approach
	The algorithm and implementation details

	Dataset description
	Evaluation
	Cross-Market Repackaging
	Cross-market Comparison
	Application Clusters

	Related work

	Static-Dynamic Analyser of Android Apps
	The Problem of Dynamic Code Updates
	Study of Dynamic Code Updates in Apps
	Google Play
	Third-party markets
	Malware

	Illustrative Example of Dynamic Code Update
	An Overview of StaDynA
	Android Class loading overview
	Android Class Loaders
	Class Loading Process
	Android class loading peculiarities

	Reflection
	Reflection usage in Android
	Reflection API

	Implementation
	The server part
	The client part

	Method Call Graph
	Method call graph description

	Evaluation
	Results on Benign Apps
	Results on Malware Samples

	Related Work

	Attestation Service for the Android Platform
	The Problem of Absence of Attestation Service Infrastructure for Android
	TruStore Overview
	TruStore Implementation Details
	Android Application Management with TruStore
	Related Work

	Supporting Security Profiles in Android
	Virtual Environments for Smartphones
	Related Work
	Android security extensions
	Bring Your Own Device approaches

	MOSES Overview
	Architecture
	Implementation
	Context Detection
	Filesystem Virtualization
	Dynamic Application Activation
	Attribute-based Policies
	Security Profile Management

	MOSES Evaluation
	Energy overhead
	Storage overhead
	Microbenchmark
	Security Profile Switch Overhead
	Overheads of fine-grained control

	Conclusion
	Dissertation Summary and Future Work
	Fast Detection of Repackaged Android Applications
	Static-Dynamic Analyser of Android Apps in the Presence of Reflection and Dynamic Class Loading
	Attestation Service for the Android Platform
	Supporting and Enforcing Security Profiles

	Bibliography

