
StaDynA: Addressing the Problem 

of Dynamic Code Updates in the 

Security Analysis of Android Apps

Yury Zhauniarovich, MaqsoodAhmad, Olga Gadyatskaya, 

Bruno Crispo, Fabio Massacci

yury.zhauniarovich, maqsood.ahmad, bruno.crispo, fabio.massacci@unitn.it

olga.gadyatskaya@uni.lu

University of Trento

SnT, University Of Luxembourg



Analysis Types

 Static analysis – is the analysis 
of applications which is 
performed without the actual 
execution of an application

 Dynamic analysis – is the 
analysis which is performed by 
executing an application in real or 
emulated environments

2



Dalvik VM

Dynamic Code Updates*

3

Android Package (.apk)

assets

AndroidManifest.xml

uncompiled resources

.dex

files

resources.

arsc

DexFile.loadDex

Method.invoke
code files 

(jar, dex,…)

1. Dynamic Class Loading (DCL)

2. Reflection

* S. Poeplau et al. “Execute This! Analyzing Unsafe and Malicious Dynamic Code 

Loading in Android Applications”. In Proc. Of NDSS’14



Motivation

 In Android, code loaded dynamically has the 
same privileges as original

 Static analyzers cannot fully inspect an app in 
the presence of dynamic code update features 
(AndroGuard, FlowDroid, etc.)

4

 Heavily used by malware to 
conceal malicious behavior

 Used in real applications to 
bypass Android limitations



Reflection and DCL Usage

 Google Play:
– analyzed 13863 apps
– 19% contain DCL calls
– 88% use reflection

 Third-party markets:
– analyzed 14283 apps from 6 markets
– 6% contain DCL calls (F-Droid: 1%)
– 74% use reflection (F-Droid: 57%)

 Malware dataset:
– 1260 samples analyzed
– 20% contain DCL calls
– 81% use reflection

5



Representative Example

6



Problem: Dynamic Code Updates

Issue: How to analyze Android apps in the 
presence of

 reflection calls,

– detect the name of the called function/class

 dynamic class loading?

– download and analyze the loaded code

 Method Call Graph (MCG) is a directed graph 
showing the calling relationships between methods 
in a computer program

7



StaDynA: Idea

8

 Apps with Dynamic Code Update 
features expose their dynamic 
behavior at runtime

 IDEA: combine static and 
dynamic analysis techniques to 
detect and explore Dynamic 
Code Update features



StaDynA: Overview

9



StaDynA: Approach

 Find API calls responsible for reflection and DCL 
at static time (we name the methods calling these 
API functions as Methods of Interest (MOI)) 

 Analyze their behavior at runtime
10



StaDynA: Workflow

11



StaDynA: Features

 Stores and analyzes the 
code loaded dynamically

12

DexFile.loadDex

Method.invoke

Tmp testMeth ()V

 Discovers at runtime the 
qualifiers of the 
methods/constructors 
called through reflection

 Builds MCG of the app 
including the information 
obtained at runtime

 Discovers suspicious 
behavior patterns SMS_SEND

SmsManager sendDataMessage



StaDynA: Evaluation

 Dataset:

– 5 benign (FlappyBird, Norton AV, Avast AV, Viber, 
Floating Image)

– 5 malicious (FakeNotify.B, AnserverBot, BaseBridge, 
DroidKungFu4, SMSSend)

 The dataset is small:

– StaDynA requires manual triggering

 Evaluation parameters:

– the increase of the MCG

– coverage of the MOI detected in the application

– discovered suspicious patterns

13



Evaluation: MCG Increase

14



Evaluation: Coverage

15



Evaluation: Suspicious Patterns

 Access to the 
functionality protected 
with dangerous 
permissions from the 
loaded code

16

 Ticks show that the usage of the corresponding 
permission has not been found in the initial app file 
(over-privileged apps)



FakeNotify.B before StaDynA

17



FakeNotify.B after StaDynA

18



StaDynA: Issues

 Manual triggering

 Resolution of all reflection 
targets is done at runtime

 The information obtained 
during different runs is not 
merged

19

 No separation according to the name of the 
package (UID is used instead)

 Not all types of dynamic code updates have 
been covered



StaDynA: Summary

 Dynamic code updates is a serious problem for 
Android
– the code loaded dynamically has the same privileges as 

the original application

 We proposed an approach that facilitates the 
analysis of apps in the presence of reflection and 
DCL
– discovers at runtime the qualifiers of the 

methods/constructors called through reflection

– stores and analyzes code loaded dynamically

– builds MCG of the app including the information obtained 
at runtime

– discovers suspicious behavior patterns

 Open-source:

https://github.com/zyrikby/StaDynA
20

https://github.com/zyrikby/StaDynA


BACKGROUND SLIDES

21



StaDynA: Main Function

22



Analysis of Invoke Event

23



Analysis of DCL Event

24


