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Abstract

Static analysis of Android applications can be hindered by
the presence of the popular dynamic code update techniques:
dynamic class loading and reflection. Recent Android mal-
ware samples do actually use these mechanisms to conceal
their malicious behavior from static analyzers. These tech-
niques defuse even the most recent static analyzers (e.g.,
[12, 21, 31]) that usually operate under the “closed world”
assumption (the targets of reflective calls can be resolved at
analysis time; only classes reachable from the class path at
analysis time are used at runtime). Our proposed solution
allows existing static analyzers to remove this assumption.
This is achieved by combining static and dynamic analysis
of applications in order to reveal the hidden/updated behav-
ior and extend static analysis results with this information.
This paper presents design, implementation and preliminary
evaluation results of our solution called StaDynA.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection; D.2.5
[Software Engineering]: Testing and Debugging—Code
inspections and walk-throughs, Tracing

Keywords

Android; Dynamic Code Updates; Security Analysis

1. INTRODUCTION
Mobile applications (apps for short) are complex programs

that offer sophisticated user experiences by exploiting the
whole spectrum of dynamic code update features provided
by the Android platform.
Yet, these features (reflection and dynamic class loading)

combined with the common practices adopted by mobile
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app developers make the static analysis of mobile apps a
challenging task. This is particularly daunting when static
analysis is used in order to check the security of mobile ap-
plications (e.g., to detect the presence of malicious behav-
ior). Indeed, Rastogi et al. [40] mention reflection among
the techniques that make most of the current static analysis
tools unable to detect malicious code. Additionally, static
analysis is hindered by the code that evolves dynamically,
because some parts of the code are impossible to discover or
to analyze at installation time as they appear only at run-
time. As a matter of fact, existing state of the art static
analyzers for mobile applications (e.g., [12, 21, 31]) assume
that the code base does not change dynamically and the tar-
gets of reflection calls can be discovered in advance. This
is a clear simplification of what happens in the real world,
where many apps rely on code base updated at runtime.

Wang et al. [43] demonstrate the difficulty to certify apps
written by a malicious developer. They developed a proof
of concept malicious iOS app that passed successfully the
review process on Apple’s App Store. The code submitted
for review was benign, yet the app was able to update itself
on the device in order to introduce malicious control flows
and to perform illicit tasks (such as attacking other apps and
exploiting kernel vulnerabilities). Similar proof of concept
apps, which were able to bypass the Google Bouncer1 check
using dynamic code update features, were also developed for
the Android platform [38].

At the same time, previous approaches that enhanced
static analyzers of Java code in the presence of dynamic
code update techniques (e.g., [17]) cannot be directly ap-
plied to Android due to the differences in the platforms (in
Android, load-time instrumentation of classes is not avail-
able). Moreover, offline instrumentation also cannot solve
the problem because this approach breaks the application
signature, while some apps check it at runtime. If the signa-
ture does not correspond to some hardcoded value they may
refuse to work. In case of malicious apps this check may be
used to conceal illicit behaviour.

In this paper we present StaDynA, a system supporting
security app analysis in the presence of dynamic code up-
date features. Our main contributions can be summarized
as follows:

1A system that checks applications uploaded by developers
to Google Play for malicious functionality.



• We analyzed a large set of apps (downloaded from
Google Play and third-party markets) and malware
samples. Our findings show that extensive amount of
Android apps relies on dynamic code update features.

• We designed and implemented StaDynA – a system
that interleaves static and dynamic analysis in order to
reveal the hidden/updated behavior. StaDynA down-
loads and makes available for analysis the code loaded
dynamically, and is able to resolve the targets of re-
flective calls complementing app’s method call graph
with the obtained information. Thus, StaDynA can
be used in conjunction with other static analyzers to
make their analysis more precise.

• We release our tool as open-source2 to drive the re-
search in this direction.

• We evaluated StaDynA on a set of real applications.
We report that StaDynA is useful in uncovering dan-
gerous functionality not present (or not visible to static
analyzers) in the initial distribution of the app.

The rest of the paper is organized as follows. §2 presents
the results of our analysis of dynamic code update feature us-
age in Android apps. §3 provides a background on dynamic
class loading and reflection in Android. §4 gives a high-level
description of StaDynA, while §6 covers the implementa-
tion details. §5 presents our approach to build method call
graphs and visualise them. §7 reports on the evaluation of
StaDynA on real apps. §8 discusses the limitations of the
current implementation, and envisages the future work. §9
overviews the related work, and §10 concludes.

2. ANALYSIS OF DYNAMIC CODE UPDATE

FEATURES IN ANDROID APPS
To understand how significant is the use of reflection and

dynamic class loading (DCL) in Android apps we performed
a study of 13,863 packages from Google Play [10] (the official
market maintained by Google), and 14,283 apps from sev-
eral third-party markets gathered in July 2013, along with
1260 malware samples from [51]. Notice that for reflection
cases we consider calls that influence the app method call
graph (MCG), i.e., method invocation (invoke) and object
creation (newInstance) functions, and do not study other
reflection API capabilities like field modification (because
they do not influence the MCG used for analysis in our sys-
tem).
The aggregated results of the analysis with our modified

version3 of AndroGuard [1] are shown in Table 1. It is evi-
dent that dynamic code update features are widely used by
application developers.
On Google Play we downloaded approximately 500 top

free applications from each category. The analysis shows
that on average 18.5% of dissected apps in Google Play con-
tain DCL and 88% use reflection. On average, apps with
DCL contain 1 DCL call and apps with reflection incorpo-
rate around 22 reflective calls. The categories “BUSINESS”,
“SHOPPING” and “TRAVEL AND LOCAL” show minimal

2https://github.com/zyrikby/StaDynA
3We found out that AndroGuard does not discover all pos-
sible cases of reflection and DCL.

Table 1: Usage of DCL and Reflection in Applications

Markets
Total DCL used by Refl. used by
Apps Apps % Apps %

Google Play 13863 2573 18.5% 12233 88.2%

Androidbest 1655 35 2.1% 1088 65.7%
Androiddrawer 2677 379 14.1% 2596 96.9%
Androidlife 1677 117 6.9% 1368 81.5%
Anruan 4230 162 3.8% 2868 67.8%
Appsapk 2664 112 4.2% 1907 71.5%
F-droid 1380 11 0.07% 792 52.8%

Malware 1260 251 19.9% 1025 81.3%

Total 29406 3640 12.3% 23877 81.1%

DCL rates (at most 10% of apps use DCL). The most “dy-
namic” category is “GAME”: 38.3% of applications in this
category use DCL4.

We further downloaded apps from 6 third-party markets,
namely, androidbest [4], androiddrawer [5], androidlife [6],
anruan [7], appsapk [8] and f-droid [9]. The first 5 markets
distribute only provided apk files, while the latter (f-droid)
along with the final packages also provides links to the source
code of the apps. The lowest fraction of applications with
DCL calls were observed on the f-droid market that contains
only open-source apps. In terms of individual usage, the av-
erage number of reflection calls is around 19 per app package
across all third-party markets (with f-droid exhibiting again
the lowest number of reflection calls at around 14).

Besides the analysis of benign applications, we studied
malware samples provided in [51]. The average percentage
of DCL usage across all malware samples is 19.9%, whereas
81% of all samples use reflection. However, this dataset is
old, and DCL usage rates in more recent malware applica-
tions are expected to be significantly higher [38] because this
functionality is used to conceal malicious payloads [26] from
static and dynamic analyzers like Google Bouncer.

Listing 1 is a code snippet of the AnserverBot Trojan [50],
which illustrates how reflection and DCL are used to thwart
static analyzers from detection of malicious functionality.
Line 16 shows an example of a dynamic class loading call in
Android using the DexClassLoader class. The name of the
file from which the code is loaded is computed at runtime in
Line 8. Line 26 exhibits how to create an object of the loaded
class using reflective call of the default constructor. Line 28
demonstrates a method invocation through reflection; the
name of the invoked method is passed as a parameter and,
thus, may not be available for static analysis.

3. REFLECTION AND DYNAMIC CLASS

LOADING IN ANDROID
In order to understand the design of StaDynA, we first

provide some background information on dynamic class load-
ing and reflection implementation in Android. Notice that
while in this paper we consider the Dalvik Virtual Machine
(the Dalvik VM or DVM), the same functionality, i.e., DCL
and reflection, is also present in the new Android runtime
called ART that replaces DVM in the recent platform ver-
sions.

4Mobile games can be very sophisticated and include real-
istic physics and a lot of graphics. Thus, developers often
develop the original app as an installer that dynamically
fetches additional code during the first run.



1 [ com . sec . android . p rov ide r s . drm . Doctype ]
2 pub l i c s t a t i c Object b( F i l e pFi le , S t r ing pStr1 ,

S t r ing pStr2 , Object [ ] pArrOfObj ) {
3 St r ing s3 ;
4 i f ( pF i l e == nu l l ) {
5 St r ing s1 = a . g e tF i l e sD i r ( ) . getAbsolutePath ( ) ;
6 // get the name o f the f i l e to be loaded
7 //9CkOrC32uI327WBD7n −> / anserverb . db
8 St r ing s2 = Xmlns . d( ”9CkOrC32uI327WBD7n ”) ;
9 s3 = s1 . concat ( s2 ) ;

10 }
11 f o r ( F i l e l o c F i l e = new F i l e ( s3 ) ; ; l o c F i l e =

pFi l e ) {
12 St r ing s4 = l o cF i l e . getAbsolutePath ( ) ;
13 St r ing s5 = a . g e tF i l e sD i r ( ) . getAbsolutePath ( ) ;
14 ClassLoader locClas sLoader = a . getClassLoader

( ) . getParent ( ) ;
15 // get the c l a s s s p e c i f i e d by ”pStr1 ” from

anserverb . db
16 Class l o cC l s = new DexClassLoader ( s4 , s5 , nu l l

, l ocClas sLoader ) . l oadClas s ( pStr1 ) ;
17 Class [ ] arrOfCls = new Class [ 5 ] ;
18 arrOfCls [ 0 ] = Context . c l a s s ;
19 arrOfCls [ 1 ] = Intent . c l a s s ;
20 arrOfCls [ 2 ] = BroadcastRece iver . c l a s s ;
21 arrOfCls [ 3 ] = F i l eDe s c r i p t o r . c l a s s ;
22 arrOfCls [ 4 ] = St r ing . c l a s s ;
23 // get the method s p e c i f i e d by ”pStr2 ”
24 Method locMtd = locC l s . getMethod ( pStr2 ,

arrOfCls ) ;
25 // c r ea t e new in s tance o f the c l a s s
26 Object locObj = lo cC l s . newInstance ( ) ;
27 // invoke the method through r e f l e c t i o n
28 re turn locMtd . invoke ( locObj , pArrOfObj ) ;
29 }
30 }

Listing 1: DCL and Reflection Usage in AnserverBot

3.1 Reflection
The ability of a program to manipulate as data something

representing the state of the program during its own execu-
tion is called reflection [16]. Although Android is based on
the Dalvik VM, the reflection API is almost the same as that
of Java (with only several subtle differences). This API is
used to access class information at runtime, create objects,
invoke class methods, change the modifiers and the values
of data field members [44]. More precisely, in Android the
reflection API is used for the following purposes:
Hidden API method invocation. The developers of the
Android OS may mark some methods as hidden (using @hide
tag). In this case, the declaration and description of these
methods does not appear in the SDK library and, thus, is
not available for application developers. At the same time,
app developers may use the reflection API to invoke these
methods at runtime.
Access to the private API methods and fields. During
compilation, the compiler ensures that the rules of access to
fields and methods according to the specified modifiers hold.
Yet, using the reflection API it is possible to manipulate with
modifiers and, therefore, gain access to private members of
a class at runtime.
Conversion from JSON and XML representation to

Java objects. The reflection API is heavily used to gener-
ate automatically JSON and XML representation from Java
objects and vice versa.
Backward compatibility. It is advised to use reflection
to make an app backward compatible with the previous ver-
sions of the Android SDK. In this case, reflection is exploited

either to call the API methods, which have been marked as
hidden in the previous versions of the Android SDK, or to
detect if the required SDK classes and methods are present
in the current framework version.
Plug-in and external library support. In order to extend
the functionality of an application, the reflection API may
be used to call plug-ins or external library methods provided
at runtime using dynamic class loading functionality.

3.2 Dynamic Class Loading
The Dalvik VM allows a developer to load at runtime

code obtained from alternative locations, such as the internal
storage or over the network [19]. This functionality is usually
used to:
Overcome the 64K method reference limit. Maximum
number of method references in a dex file is 64K, but addi-
tional methods can be put in a separate dex file and loaded
dynamically.
Extend app functionality at runtime. An app can pro-
vide stubs that process events using the pieces of code writ-
ten by different developers. These pieces of code are called
plug-ins, and DCL is widely used here to load the plug-in
code into the memory.

Although Android allows developers to load and execute
code dynamically, Google strongly recommends to avoid us-
ing this feature [3]. These recommendations are based on the
fact that DVM does not provide a secure environment for
the code supplied dynamically. Thus, this code has the same
permissions as the app that loads this code. Moreover, DVM
does not isolate code from the underlying operating systems
capabilities and, thus, dynamically loaded code can oper-
ate with native libraries without any constraints [3]. These
are crucial differences of the Android security architecture
comparing with Java’s one.

Class loaders are responsible for controlling the loading of
classes into DVM. The process of loading classes in Android
resembles the one implemented in Java [34,41]. As in JVM,
Dalvik VM also has the bootstrap class loader responsible for
loading core API classes. The system class loader is liable
for loading application classes.

Similarly to Java, in Android class loaders form a tree. To
organize this structure, each class loader holds a reference to
its parent. The bootstrap class loader is the root of this tree;
it has a null reference to its parent. An app may also de-
fine additional class loaders. In Android all particular class
loaders are derived from java.lang.ClassLoader (possibly
indirectly). Android provides several concrete implementa-
tions of this class, PathClassLoader and DexClassLoader

being the most widely used ones.

4. AN OVERVIEW OF STADYNA
The architecture of StaDynA presented in Figure 1 com-

prises two logical components: a server and a client.
The static analysis of an application is performed on the

server. In this respect, StaDynA allows an analyst to easily
plug in and use any static analyzer in its architecture. The
static analyzer on the server builds the initial method call
graph (MCG) of the app, integrates the results of the dy-
namic analysis coming from the client, and stores the results
of the scrutiny. The client part of StaDynA is a modified
Android operating system, hosted either on a real device or
an emulator. The client runs the application whenever the
dynamic analysis is required.



Figure 1: System Overview

In action, our system interleaves the execution of the static
and dynamic analysis phases. However, to simplify the pre-
sentation, we describe them sequentially.

Preliminary analysis.
The server statically analyzes an app package and builds

a MCG of that application (see Step a in Figure 1; solid
arcs denote edges resolved statically). Dynamically loaded
code cannot be analyzed during this phase and, thus, the
corresponding nodes and edges are not present in the MCG.
Further, the names of methods called through reflection may
also not be inferred if they are represented as encrypted
strings or generated dynamically. Still, a static analyzer can
effectively detect the points in the MCG where the function-
ality of an application may be extended at runtime. Indeed,
the usage of reflection and DCL requires to use specific API
calls provided by the Android platform. The server detects
these calls during the static analysis phase by searching for
methods where DCL and reflection API calls are performed.
We call these methods methods of interest (MOI).

Dynamic execution.
If MOIs have been detected in the application, StaDynA

installs the app on the client (Step 2 ) and launches the dy-
namic analysis. The dynamic phase is exercised to com-
plement the MCG of the app and to access the code loaded
dynamically. The dynamic analysis is performed on a device
(or an emulator) with a modified Android OS. The added
modifications log all events when the app executes a call
using reflection, or when additional code is loaded dynami-
cally. Along with these events, the client also supplies some
additional information, e.g., in case of a reflection call, the
information about the called function and the stack trace (it
contains the ordered list of method calls, starting from the
most recent ones) is added. In case of DCL call, the path to
the code file and the stack trace are supplied. The informa-
tion collected by the client is passed back to the server side
(Step 3 ).

Analysis consolidation.
The server performs an analysis of the obtained informa-

tion. In case a reflection call happens, the server comple-
ments the MCG of the app with a new edge (in Figure 1
it is represented by a dashed arc). This edge connects the
node of the method that initiated the call through reflection
(the node at the beginning) with the one corresponding to
the called function (the node at the end).

When DCL is triggered the client infers which file was used
to get the code. Using this evidence, the server downloads
the file (Step 4 ) containing the code, and performs the static
analysis on it. The MCG of the app is then updated with
the obtained information (see the part of the MCG in the
dashed oval in Figure 1). Additionally, for each downloaded
file the server analyzes whether it contains other MOIs. If
it does, the list of the MOIs for the application is updated.
This allows StaDynA to unroll nested MOIs. The stack
trace data both for the reflection and DCL cases is used to
detect which MOI initiated the call.

Marking suspicious behavior.
In Android, some API calls are guarded by permissions.

Since APIs protected by the permissions could potentially
harm the system or compromise user’s data, the permissions
must be requested in the AndroidManifest.xml file. How-
ever, there is no actual check which permissions are required
to execute the written code and sometimes developers re-
quest more permissions than they actually use. In this case,
those apps are called overprivileged. Many researchers, e.g.,
Bartel et al. [14], identified that malware, adware and spy-
ware exploit additional permissions to get access to security
sensitive resources at runtime.

Based on these considerations, we classify the following
app behavior patterns as suspicious:

• An application dynamically loads the code that con-
tains API functions protected with permissions. In-
deed, malware may use this approach to evade detec-
tion by static analyzers, as the security-sensitive code
is loaded dynamically.

• An application calls through reflection an API method
protected with a dangerous permission5. This func-
tionality can be used, for instance, to send malicious
SMS, which cannot be detected by static analysis tools
because the name of the SMS sending function is en-
crypted and decrypted only at runtime.

Detection of these suspicious patterns has been added to
our tool. StaDynA raises a warning if such patterns occur
during the analysis. Section 7 shows that indeed malware
samples do expose such suspicious patterns.

5. METHOD CALL GRAPH
Method call graphs (or function call graphs) identify the

caller-callee relationships for programmethods. These struc-
tural representations of programs are widely used for differ-
ent purposes. In the scope of Android, method call graphs
are used, e.g., to detect malware [27, 29, 33], to identify
potential privacy leaks in applications [23, 28, 49], to find
vulnerabilities [42] and execution paths for automatic test-
ing [48].

StaDynA extends the initial MCG generated with a tra-
ditional static analyzer with the information detected at run-
time. Thus, if an application exposes dynamic behavior all
mentioned approaches can benefit from the expanded MCG
obtained with StaDynA.

5Google classifies as “dangerous” permissions with higher-
risk level that guard access to private user data or device
controls [2].



Example.
To visualize the capabilities of StaDynA and the process

of method call graph expansion, we show the evolution on
the example of a demo app. Figure 2a shows the MCG of
the app obtained with the AndroGuard static analyzer [1].
Figure 2b shows the one gained with StaDynA before dy-
namic execution phase, and Figure 2c presents it with dy-
namic execution phase. The demo app dynamically loads
some code from an external jar file at runtime and calls the
loaded methods through reflection.
Figure 2a illustrates that AndroGuard identifies only the

presence of ordinary methods and DCL calls (Ellipse 1) but
no further analysis is done about those. Yet, Figure 2b shows
that after preliminary analysis StaDynA selects 3 paths,
which are surrounded by dashed ellipses. Ellipse 1 shows
that a MOI (the dark grey node) invokes a constructor (the
dark green node) through reflection. Similarly, Ellipse 2
displays a method invocation through reflection. Ellipse 3
depicts that a DCL call (the red node) is performed in a
MOI (the dark grey node).
During the dynamic analysis StaDynA adds the edges

that are outlined by Ellipses 4-7 (see Figure 2c). These el-
lipses show the cases when the MOIs are resolved and corre-
sponding nodes and edges are added to the MCG. Ellipse 4
shows that as a result of a DCL call (the red node) a new
code file has been loaded (the pink node). Ellipse 7 shows
that a class constructor (the grey node) is called through
reflection. Ellipse 5 shows a method invoked through reflec-
tion. This method contains an API call protected by the
Android permission indicated by the blue node in Ellipse 6.
There are also nodes and edges that appear as a result of
the analysis of the code file (the pink node) loaded dynam-
ically. These nodes and edges are connected with the rest
of the graph through the reflection new instance call (see
Ellipse 7).
Ellipses 2, 3, 8, 9 show other types of connections possible

among nodes in a MCG obtained with our tool. Ellipse 2
shows the connection between the class and its construc-
tor, Ellipse 3 shows an ordinary relation between two meth-
ods, Ellipse 9 connects the static initialization block and the
class, and Ellipse 8 shows that the method is called from the
static initialization block.
Each node type is assigned with a set of attributes, not

shown in the figures. The analysis of values of these at-
tributes can facilitate dissection of Android applications ac-
companied by the expanded method call graph. For in-
stance, each method node is assigned with attributes, which
correspond to a class name, a method name and a signature
of this method. A permission node is assigned with a per-
mission level along with the information about the API call
that it protects.

6. IMPLEMENTATION
This section provides the implementation details of some

key aspects of StaDynA. The workflow of our system oper-
ation is shown in Figure 3. App analysis starts at the server
side. All occurrences of reflection and DCL methods are
identified in the code of the application under analysis. In
case neither of them is found, StaDynA builds a MCG of
the app and exits. Otherwise, it starts the dynamic analysis
on a device with the modified Android OS, which constitutes
the client part of StaDynA.
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Figure 3: The StaDynA Workflow

6.1 The server
The server side of StaDynA is a Python program that in-

teracts with a static analysis tool. Currently, StaDynA uses
AndroGuard [1] as a static analyzer. AndroGuard repre-
sents compiled Android code as a set of Python objects that
can be manipulated and analyzed. However, StaDynA can
work with any static analysis tool that is able to analyze apk
and dex files. To improve suspicious behavior detection we
substituted the permission map embedded in AndroGuard
(built for Android 2.2 in [25]) with the one generated by
PScout [13] for Android 4.1.2.

Algorithm 1 App Analysis Main Function Algorithm

1: function perform analysis(inputApkPath, resultsDirPath)
2: makeAnalysis(inputApkPath)
3: // Check if there are MOI
4: if !containsMethodsToAnalyze() then
5: performInfoSave(resultsDirPath)
6: return
7: end if
8: dev ← getDeviceForAnalysis()
9: package name← get package name(inputApkPath)
10: dev.install package(inputApkPath)
11: uid← dev.get package uid(package name)
12: messages← dev.getLogcatMessages(uid)
13: loop
14: msg ← dequeue(messages)
15: // analyzeStadynaMsg contains a switch statement
16: // that selects a corresponding processing routine
17: // shown in Algorithms 2 and 3 based on the msg type
18: analyzeStadynaMsg(msg)
19:
20: // Quit if a user finishes analysis
21: if finishAnalysis then
22: performInfoSave(resultsDirPath)
23: return
24: end if
25: end loop
26: end function

The pseudo-code of the main server function is presented
in Algorithm 1. The server starts the analysis of the pro-
vided app by extracting the classes.dex file (see Step 1, 2
and 3 in Figure 3; Line 2 in Algorithm 1), and then dissects
the extracted code. During this step StaDynA searches in
the code all occurrences of reflection and DCL calls. The
list of searched patterns for these API calls is presented in
Table 2.

If MOIs are found, StaDynA selects a device (a real
phone or an emulator) to perform the dynamic analysis on



(a) (b) (c)

Figure 2: MCG of demo app Obtained with a) AndroGuard b) StaDynA after Preliminary Analysis c) StaDynA after
Dynamic Analysis Phase

Table 2: The List of Searched Patterns

Class Method Prot.

Dynamic class loading

Ldalvik/system/PathClassLoader; < init > .
Ldalvik/system/DexClassLoader; < init > .

Ldalvik/system/DexFile; < init > .
Ldalvik/system/DexFile; loadDex .

Class instance creation through reflection

Ljava/lang/Class; newInstance .
Ljava/lang/reflect/Constructor; newInstance .

Method invocation through reflection

Ljava/lang/reflect/Method; invoke .

(Line 8) and installs the app under analysis (Line 10) onto
the client (Step 5 in Fig. 3). After that the server obtains
the UID of the installed package (Line 11) and starts a loop
(Lines 13-25) that analyzes one by one messages (Line 12)
obtained using the logcat utility from the main log file of
the Android system. Basically, each obtained message is
represented in the JSON format and contains values for the
following fields: UID (required), operation (required), stack
(required), class (optional), method (optional), proto (op-
tional), source (optional), output (optional). The value of
the UID field is used to select the messages produced by the
analyzed app. If the user stops the analysis, StaDynA saves
the results and finishes its execution.
The function analyzeStadynaMsg (Line 18) analyzes the

selected StaDynA messages obtained from the client. It
extracts the value of the operation field and based on this
value selects the appropriate routine to analyze the message.
The routines for the reflection messages analysis are sim-

ilar, so we consider them on the example when operation
corresponds to reflection invoke. The algorithm for anal-
ysis of the reflection invoke messages is shown in Algo-

rithm 26. Lines 2 - 4 extracts the method name along with
its class name and the prototype, which has been called
through reflection. Line 5 gets the stack from the mes-
sage. Line 7 searches for the first reflection invoke occur-
rence in the stack. The next stack entry corresponds to
the method that has performed the reflection call invSr-
cFrStack (Line 9). Then in the loop StaDynA compares
this method with the list of MOIs extracted from the appli-
cation executables (Lines 10 - 20). If the method is found
StaDynA complements the MCG with the obtained infor-
mation (Line 15), and deletes it from the list of uncovered
invoke MOIs (Line 17). Otherwise, it adds this method to
the list of vague methods (Line 21). This information is
later analyzed to see why the method calling reflection was
not found in the application executable during the static
analysis phase.

The processing function for the DCL messages is slightly
different (see Algorithm 3). From the message received from
the client the server extracts the source path of the file con-
taining the code loaded dynamically (Line 2). Using this
information, StaDynA downloads the file locally (Line 4),
and processes it (Line 5). This process includes computa-
tion of the file hash and copying the file into the results
folder with a new filename, which includes the computed
hash. The file hash allows us to check whether the file has
been already loaded and avoid analysis of already checked
code. Otherwise, the code analysis for MOIs is performed
for the loaded code (Line 15). Function getDLPathFrStack

(Line 6) searches for a pair of a DCL call and a MOI in
the stack corresponding to the one extracted from the app
executable. If this pair is found, then it is removed from the
list of uncovered DCL calls (Line 11). Otherwise, StaDynA

adds the information about the dynamic class loading call
into the list of vague calls (Line 19).

6The algorithm for analysis of reflection newInstance mes-
sages is very similar so we do not show it.



Algorithm 2 Analysis of the Reflection Invoke Message

1: function processReflInvokeMsg(message)
2: cls← message.get(JSON CLASS)
3: method← message.get(JSON METHOD)
4: prototype← message.get(JSON PROTO)
5: stack ← message.get(JSON STACK)
6: invDstFrCl← (class,method, prototype)
7: invPosInStack ← findFirstInvokePos(stack)
8: thrMtd← stack[invPosInStack]
9: invSrcFrStack ← stack[invPosInStack + 1]
10: for all invPathFrSrcs ∈ sources invoke do
11: invSrcFrSrcs← invPathFrSrcs[0]
12: if invSrcFrSrcs 6= invSrcFrStack then
13: continue
14: end if
15: addInvPathToMCG(invSrcFrSrcs, thrMtd, invDstFrCl)
16: if invPathFrSrcs ∈ uncovered invoke then
17: uncovered invoke.remove(invPathFrSrcs)
18: end if
19: return
20: end for
21: addV agueInvoke(thrMtd, invDstFrCl, stack)
22: end function

Algorithm 3 Analysis of the DCL Message

1: function processDexLoadMsg(message)
2: source← message.get(JSON DEX SOURCE)
3: stack ← message.get(JSON STACK)
4: newFile← dev.get file(source)
5: newFilePath← processNewFile(newFile)
6: dlPathFrStack = getDLPathFrStack(stack)
7: if dlPathFrStack then
8: srcFrStack ← dlPathFrStack[0]
9: thrMtd← dlPathFrStack[1]
10: if dlPathFrStack ∈ uncovered dexload then
11: uncovered dexload.remove(dlPathFrStack)
12: end if
13: addDLPathToMCG(srcFrStack, thrMtd, newFilePath)
14: if !fileAnalyzed(newFilePath) then
15: makeAnalysis(newFilePath)
16: end if
17: return
18: end if
19: addV agueDL(newFilePath, stack)
20: end function

Notice that the presented algorithms are simplified ver-
sions of the ones actually implemented in the server part.
For instance, in a real application it is possible that the
same MOI acts like a proxy used to call different targets
(e.g., the same method could be used to load different code
files). The real algorithms implemented in StaDynA are
able to process these cases.

6.2 The client
The client side can run either on a real device or on an

emulator. Using the emulator is more convenient because
one can run the client and server on the same machine.
The main drawback is that currently the Android emulator
is quite slow. Moreover, mobile applications may suppress
some functionality if they detect they are running in an em-
ulated environment. With these limitations in mind, we im-
plemented and tested our client on a real device. However,
the code is not device-dependent so it can be easily ported
to an emulator or another device.
To obtain the information required for analysis of reflec-

tion and DCL usage, we have modified the DVM and libcore

components. To obtain the information related to DCL we
added a hook to the method openDexFile of the DexFile

class. This method is called when a new file with the code is
opened. It gets three parameters as an input, where source-

Name is of our interest. The added code forms a JSON mes-
sage that contains the path to the file, from which the code
is loaded (sourceName). Along with this information, the
stack trace data and the UID of the process are also added
into the message, which is then printed out to the main log
file of Android.

To get the information about method invocation through
reflection, a hook was placed into the invoke function of the
Method class. Each Method object has declaringClass, name
and parameterTypes member fields, which represent class
name, method name and prototype of the invoked method
respectively. This information along with the stack trace
is put into the StaDynA message. Similarly, to log the
information about new class creation through reflection, we
put our hooks into the newInstance method of the Class

and Constructor classes.
Each StaDynA message contains the stack trace informa-

tion. Stack trace is a sequence of method calls performed in
the current thread starting from the most recent ones. The
information from a stack trace is usually used to find the
origin of an exception in a program. In our case, the stack
trace information is used to detect the MOI, which calls the
reflection or DCL methods. In essence, a stack trace is an
array of stack trace elements. Each stack trace element con-
tains information about the class name, the method name
and the line number of the method call in the source code.
Unfortunately, using only this information it is not possible
to uniquely identify the MOI, because we do not have ac-
cess to the source code of the application. Moreover, due to
function overloading it is possible to have several methods
in a class with the same name. To overcome this limitation
we modified theStackTraceElement class so that it can store
the information about the method prototype. Method name
and its prototype allow us to uniquely identify a method in
a class.

A StaDynA message has a header and a body. To dis-
tinguish StaDynA messages from other log messages we
add a special marker to the header. The second part of the
message header is the part number. Currently, there is a
limit on the length of the Android log entries specified by
the constant LOGGER_ENTRY_MAX_PAYLOAD. To overcome this
problem, we added the functionality to the client that allows
it to split a message into several parts. The server takes care
of assembling the original message.

7. EVALUATION
This section describes our application test suite and re-

ports on the results of our experiments. In order to evaluate
StaDynA we tested it on real applications, both benign and
malicious. The server runs on a machine with 2.5 GHz In-
tel Core i5 processor and 4 GB DDR3 memory. The client
is a Google Nexus S smartphone with the modified Android
OS version 4.1.2 r2 connected to the server using a standard
USB cable.

The evaluation test suite consists of a set of 5 benign and
5 malicious applications. The benign applications were se-
lected based on their popularity and the presence of MOIs
in the code. The malware samples were selected based on
the study presented in Section 2 from the families exhibit-
ing DCL as a part of malicious behavior. We also added two
malware samples (FakeNotify.B and SMSSend) to our test
suite based on the reports of antivirus companies [24,37].



Table 4: Evaluation: MCG Expansion

Apps
Nodes Edges Perm. Nodes

Init. Final Init. Final Init. Final

Benign Applications

FlappyBird 8592 8614 11014 11031 9 9
Norton AV 42886 55372 65960 85665 63 81
Avast AV 31317 32363 43554 44956 22 25
Viber 42536 46312 60078 65627 67 71

ImageView 5708 5713 6488 6496 7 7

Malicious Applications

FakeNotify.B 148 171 137 191 1 2
AnserverBot 1006 1614 1138 2093 12 23
BaseBridge 1172 1780 1364 2333 14 25
DroidKungFu4 1550 21168 1779 23589 26 250

SMSSend 431 537 826 951 0 3

To evaluate StaDynA, the selected apps were manually
inspected in order to trigger execution of MOIs. We also
experimented with automatic triggering using the monkey
tool [11]. This tool generates pseudo-random streams of
user events and executes them on a device. Unfortunately,
due to its random nature this tool was not useful for our ex-
periments because StaDynA requires triggering of precise
methods which contain reflection and DCL calls. To facili-
tate manual analysis, we extend our tool with the function-
ality that reports which MOIs have not been yet triggered.
Observing this list an analyst may predict what actions will
cause the execution of the uncovered MOIs. Here we report
the results obtained using manual triggering.
Table 3 shows the numbers of detected MOIs for each op-

eration (“Refl. Invoke”, “Refl. NewInstance” and “DCL”).
Each operation column has 3 subcolumns that present the
number of MOIs in the initial application executable (“Init.”),
the number of detected MOIs after the analysis (“Final”),
and the number of calls we managed to trigger during the
analysis (“Triggered”). As StaDynA also analyzes the dy-
namically loaded code for MOIs, the numbers in the “Final”
columns are usually higher than in the “Init.” ones. The
ratio between the numbers in the “Triggered” and “Final”
columns can be considered as a coverage metric for Sta-

DynA for every operation. Indeed, achieving 100% for this
metric would mean that all MOIs were triggered at least
once.
As the result of MOIs triggering, the MCG of the ap-

plications grows. Table 4 characterizes the effect of MCG
expansion after StaDynA’s analysis. MCG expansion is de-
termined by two factors: a) StaDynA is able to analyze the
code loaded dynamically and includes this information into
the final MCG b) StaDynA can resolve the targets (un-
available in the initial graph) of reflective calls. The first
subcolumn (“Init.”) shows the number of nodes, edges and
permission nodes in the initial MCG, while the second (“Fi-
nal”) presents the parameters of the MCGs obtained after
analysis with StaDynA.
The column “Perm. Nodes” in Table 4 shows the number

of detected API methods protected with dangerous permis-
sions. Table 5 presents the analysis of the dangerous per-
mission nodes discovered with the help of StaDynA. The
column “Permissions” lists the names of the dangerous per-
missions required to run the code added by dynamic code
updates features. A cross (X) in the column “New” shows
the fact that the API calls protected with this permission
were not discovered in the initial application executable. At
the same time this permission is required to run the code

Table 5: Evaluation: Dangerous Permissions

App Permissions New

Benign Applications

Norton AV WRITE_SETTINGS

READ_PHONE_STATE

INTERNET

WRITE_SYNC_SETTINGS X
GET_TASKS

Avast AV INTERNET

Viber READ_PHONE_STATE

BLUETOOTH

INTERNET

Malware

FakeNotify.B SEND_SMS X

AnserverBot INTERNET

READ_PHONE_STATE

BaseBridge INTERNET

READ_PHONE_STATE

DroidKungFu4 CHANGE_NETWORK_STATE X
ACCESS_COARSE_LOCATION

BLUETOOTH X
INTERNET

BLUETOOTH_ADMIN X
WRITE_SETTINGS X
SET_TIME_ZONE X

WRITE_SYNC_SETTINGS X
READ_PHONE_STATE

CHANGE_WIFI_STATE X
MODIFY_AUDIO_SETTINGS X

MOUNT_UNMOUNT_FILESYSTEMS X

SMSSend READ_PHONE_STATE X
SEND_SMS X

added by dynamic code updates features. These applica-
tions (with the cross in the column “New”) will be consid-
ered as overprivileged by the tools [13, 14, 25], although in
general, the apps do not belong to this category (because
they use these permissions to run the dynamic code).

Results on benign apps.
ImageView does not contain the dynamic class loading

functionality, thus its MCG was not expanded significantly
by StaDynA. A popular game FlappyBird contains 1 DCL
call, which was successfully uncovered during the analysis,
and several instances of Reflection Invoke and Reflection
NewInstance. However, the expansion of MCG produced
by StaDynA was also relatively small (22 new nodes and
17 new edges). More complex applications like the mobile
antiviruses Norton and Avast and the popular messenger
Viber demonstrated significant expansion of their MCGs:
more than 1000 of new nodes and edges were discovered by
StaDynA for each app.
Norton AV, Avast AV and Viber also demonstrated suspi-

cious behavior: they dynamically added code that invokes
dangerous Android APIs protected by permissions. No-
tice that one of new API calls added by Norton AV (pro-
tected by the WRITE_SYNC_SETTINGS permission) was not
even present in the original MCG. Thus, Norton AV would
have been flagged as an overprivileged app (the one that re-
quests more permissions than it actually uses in the code)
by the tools [13,14,25].

Results on malware samples.
FakeNotify.B and SMSSend do not contain DCL calls, and

new elements of their MCGs discovered by StaDynA ap-
peared only as a result of reflection calls. Uncovered parts of
MCGs of these apps are relatively small (while still revealing



Table 3: Evaluation: Number of MOIs for Each Operation

Apps
Refl. Invoke Refl. NewInstance DCL

Init. Final Triggered Init. Final Triggered Init. Final Triggered

Benign Applications

FlappyBird 10 11 6 6 6 0 1 1 1
Norton AV 18 137 5 8 12 2 4 4 2
Avast AV 42 42 6 19 19 5 1 1 1
Viber 101 107 26 21 47 14 2 2 1

ImageView 6 6 5 2 2 2 0 0 0

Malicious Applications

FakeNotify.B 68 68 68 9 9 9 0 0 0
AnserverBot 4 4 1 4 5 2 5 6 3
BaseBridge 5 5 1 2 3 2 2 3 3
DroidKungFu4 9 13 1 4 6 0 1 1 1

SMSSend 193 193 128 1 1 1 0 0 0

hidden suspicious functionality). More interesting results
were demonstrated by StaDynA on AnserverBot, Base-

bridge4 and DroidKungFu43, where uncovered new parts of
MCGs are comparable in size with the original statically
produced graphs. In fact, the DroidKungFu43 code size
exploded after dynamic class loading (an order of magni-
tude increase of the MCG size). This sample loaded the file
settings.apk that contained approximately 13 times more
nodes and edges than the original application.
The other two malware samples where DCL is present are

from the AnserverBot and BaseBridge families. Both sam-
ples contain more than one instance of DCL. These samples
both load two files with the names moduleconfig.jar and
bootablemodule.jar. The former one contains no MOIs,
whereas the latter contains reflection invoke and DCL calls.
bootablemodule.jar then loads another file mainmodule.jar.
This example shows how StaDynA unrolls nested calls.
In contrast to the benign apps, all evaluated malware sam-

ples exhibit suspicious functionality. This is an interesting
result, as it shows that advanced malware indeed conceals
its logic and reveals it only at runtime. E.g., SMSSend did
not have any node labeled with a dangerous permission prior
to the analysis. StaDynA has uncovered 4 such nodes (new
nodes are protected with permissions READ_PHONE_STATE and
SEND_SMS).
Our results show evidence that malware samples are more

overprivileged (they contain more permission types required
for the code loaded dynamically), so it is valid to identify the
apps as suspicious if they are overprivileged. Yet, as benign
apps can be overprivileged too, more research is required
to understand if an application is benign or malicious, and
StaDynA can be handy in exploration of this topic.

8. DISCUSSION
Our tool has space for future improvements. For Sta-

DynA the coverage of MOIs (the ratio between the num-
ber of executed MOIs at least once and total number of
discovered MOIs) is especially important. Currently, our
system uses a manual approach to trigger MOI. Since we
triggered the methods manually, StaDynA was not able
to cover all MOIs in the apps because manual triggering
is mostly GUI-based (it is challenging for a human analyst
to produce a sufficient range of system events that might
trigger all MOIs). As a way to improve StaDynA we plan
to implement an automatic approach for triggering. As a
first step in this direction we explored if the tools like mon-
key [11] can be handy. However, in our experiments we

found out that pseudo-random events generated by the tool
do not produce tolerable coverage values for MOIs. A pos-
sible approach to achieve satisfying values is to use systems
like SmartDroid [48]. SmartDroid allows an expert to spec-
ify sensitive API methods required to be triggered. In case
of StaDynA the sensitive API methods correspond to re-
flection and DCL calls. Other possible tools, which may be
useful in developing fully automatic approach, are [15,39,45].

Another possible direction to reduce the amount of man-
ual work is to resolve the targets of reflection calls statically
at least those that are represented by constant strings [31].
The analysis performed in [25] has shown that it was possi-
ble to resolve automatically the targets of reflection calls in
59% of applications that used reflection. At the same time,
the analysis was performed for the “closed world” scenario,
which is not realistic, given that dynamic class loading is a
popular technique for modern apps. Additionally, we can
see that reflection is used more heavily today than in 2011
(88% of apps in our study versus 61% reported in [25]).

Usually, dynamic analysis allows an expert to explore only
one execution path at a time. However, dynamic traces may
differ depending on the context of the execution, e.g., some
methods may contain calls invoked with parameters affecting
the reflection call target. Therefore, another direction for
improving StaDynA is to incorporate information obtained
during different runs of analysis.

StaDynA has also other limitations. Its analysis is based
on the UID of an application. However, it is possible in An-
droid that several apps have the same UID. In this case, Sta-
DynA will also collect the information produced by other
apps with the same UID. At the same time, this informa-
tion will not be used to complement MCG, but will be added
to the category of vague calls that need to be later analyzed
manually.

9. RELATED WORK
Being the most popular mobile OS, Android has won this

position due to the openness of its ecosystem and the ease
with which developers can publish apps on Google Play and
third-party markets. Yet the openness comes at the price of
large volumes of malware apps polluting the ecosystem. One
approach to tackle security and privacy of mobile apps is to
extend the security controls of the platform to detect misbe-
having apps or to enforce the desired security policy [20,47].
Solutions following this approach, often require to modify
the system image.



Another approach, more relevant to StaDynA, consists
in the analysis of the mobile application code. Many static
and dynamic analysis techniques have been proposed for
Android. The ded system [23] re-targets Dalvik bytecode
into Java class files that can be analyzed by the variety of
tools developed for Java. In the original paper [23] the
FortifySCA static analysis toolset was used for detecting
vulnerabilities and dangerous functionality, like leaking the
device IMEI. DroidAlarm [49] performs static detection of
privilege-escalation vulnerabilities in apps by constructing
paths in inter-procedural call graphs from a sensitive permis-
sion to a public interface accessible to other apps. StaDynA

complements these static analysis techniques by completing
inter-procedural call graphs.
Hu et al. proposed to explore functional call graphs (FCG)

and rely on graph similarity metrics to detect malware based
on known malware graph patterns [33]. Gascon et al. con-
tinue this research direction for Android with a technique
to detect malware apps based on comparing FCGs that are
mined with AndroGuard [27]. StaDynA can complement
these techniques by providing more precise graphs required
for analysis.
TaintDroid was among the first dynamic analysis tools for

Android apps [22]; it allows to track propagation of informa-
tion via the TaintDroid infrastructure-equipped smartphone
software stack. Sources of sensitive information are typically
the device sensors or private user information, and sinks are
network interfaces; thus the main scope of TaintDroid is de-
tection of privacy leaks. This approach is followed by Droid-
Scope [45]. DroidScope allows to emulate app execution and
trace the context at different levels of the Android software
stack: at the native code level, at the Dalvik bytecode level,
at the system API level, and at the combination of both
native and Dalvik levels. While executing an app in Droid-
Scope a security analyst can track events at different levels
and instrument parameters of invoked methods to discover
a malicious activity.
Dynamic analysis techniques are especially difficult to au-

tomate due to the need of emulating a comprehensive inter-
actions of applications with the system and a user (UI inter-
actions). Several approaches are proposed to automate the
triggering of UI events, from random event generation [32]
to more advanced approaches like AppsPlayground [39] and
SmartDroid [48]. However, all of them still have many lim-
itations on the type of events they can handle and the cov-
erage.
Recently, Poeplau et al. [38] have identified the problem

of dynamic code loading in Android apps. The authors se-
lected possible vulnerable patterns of dynamic code load-
ing and built a tool that can analyze Android apps for the
found patterns. Moreover, they propose to use whitelists
to prevent dynamic code loading that can potentially ex-
pose dangerous behavior. Whitelisting prevents unautho-
rized code from running. To get authorization the code must
either signed [46] and its signature has to be included into
a special list distributed by trusted authorities. However,
as mentioned in the article [38], extraction of the dangerous
behavior is a difficult problem by itself, especially when the
protected API is called through reflection. In contrast, Sta-
DynA aims not at preventing this loading (because a lot of
legitimate apps use it and extra complications will not be
welcomed by the developers) but at its analysis.

Reflection and Dynamic Class Loading in Java.
Gaps in the static analysis techniques in the presence of

dynamic class loading, reflection and native code were pre-
viously studied for Java. For example, similarly to our ap-
proach, in [30] a pointer analysis (based on program call
graphs) technique for the full Java language is extended by
addressing dynamic class loading and reflection via an “on-
line” analysis, when a call graph is built dynamically based
on the program execution, and dynamic class loading, reflec-
tion and native code are treated in real time by modifying
the pointer analysis constraints accordingly.

A run-time shape analysis for Java is investigated in [18].
Traditionally a shape analysis operates based on the call
graph of a program, and it allows to conclude how the heap
objects are linked to each other (e.g., if a variable can be
accessed from several threads). Yet in Java the call graph
produced from a program can be incomplete; and [18] sug-
gests how to execute an incremental shape analysis when
the call graph evolves dynamically. Our proposal does not
involve a shape analysis, yet the ideas behind our proposal
and [18] are similar.

Livshits, Whaley and Lam have studied the reflection
analysis for Java [36]. They propose refinement for the
static algorithms to infer more precise information on ap-
proximate targets of reflective calls, as well as to discover
program points where user needs to provide a specification
in order to resolve reflective targets.

Relevant to StaDynA is TamiFlex [17] that complements
static analysis of Java programs in the presence of reflection
and custom class loaders. Using the load-time Java instru-
mentation API TamiFlex modifies the original program to
perform logging of class loading and reflection call events.
This information is used to seed a tool that performs static
analysis of the program having the information obtained
during the dynamic analysis phase. This work differs from
StaDynA in several aspects. First, TamiFlex uses a special
Java API that is not available in Android. Second, although
in Android it is possible to instrument an app before loading
it on a device (offline instrumentation), some Android apps
check the application signature in its code that is changed
during the patching. Thus, for these applications the Tam-
iFlex approach will not work in Android. Third, TamiFlex
requires some debug information (the line number of the
function call) to be present. In Android during the obfusca-
tion phase this kind of information may be deleted from the
final package. Therefore, the TamiFlex approach will not
work, while StaDynA is able to process correctly this case
due to the modifications we added to the Dalvik VM.

10. CONCLUSION
Today mobile applications make an extensive use of dy-

namic capabilities, namely reflection and dynamic class load-
ing, available in the Android OS. Being adopted from Java,
these techniques in Android incur an additional threat be-
cause the loaded code receives the same privileges as the
loading one. Malicious apps can leverage these facilities to
conceal their malicious behavior from analyzers.

In this paper we present StaDynA, a technique that in-
terleaves static and dynamic analysis in order to scrutinize
Android applications in the presence of reflection and dy-
namic class loading. Our approach makes it possible to ex-
pand the method call graph of an application by capturing
additional modules loaded at runtime and additional paths



of execution concealed by reflection calls. In order to pro-
duce the expanded call graph StaDynA does not require
modification of the application itself.
The results produced by StaDynA can then be fed to the

state of the art analyzers in order to improve their precision
(for instance, a reachability analysis will be more precise
over the expanded MCG than over the original one). Thus,
StaDynA may help malware analysts by increasing their
ability to detect suspicious samples.
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