
Small Changes, Big Changes:
An Updated View on the Android Permission

System?

Yury Zhauniarovich1 and Olga Gadyatskaya2

1 Qatar Computing Research Institute, HBKU, Qatar
2 SnT, University of Luxembourg, Luxembourg

Abstract. Since the appearance of Android, its permission system was
central to many studies of Android security. For a long time, the descrip-
tion of the architecture provided by Enck et al. in [31] was immutably
used in various research papers. The introduction of highly anticipated
runtime permissions in Android 6.0 forced us to reconsider this model.
To our surprise, the permission system evolved with almost every release.
After analysis of 16 Android versions, we can confirm that the modifi-
cations, especially introduced in Android 6.0, considerably impact the
aptness of old conclusions and tools for newer releases. For instance,
since Android 6.0 some signature permissions, previously granted only
to apps signed with a platform certificate, can be granted to third-party
apps even if they are signed with a non-platform certificate; many per-
missions considered before as threatening are now granted by default.
In this paper, we review in detail the updated system, introduced changes,
and their security implications. We highlight some bizarre behaviors,
which may be of interest for developers and security researchers. We also
found a number of bugs during our analysis, and provided patches to
AOSP where possible.

Keywords: Android security, permission system, runtime permissions, com-
patibility challenges

1 Introduction

Nowadays, Android is the dominating smartphone operating system. It occupied
more than 80% of the total smartphone market share in 2015 [20]. Furthermore,
Android is truly ubiquitous existing in the Auto, TV, and Wear flavors. More-
over, many other types of devices, e.g., cameras or game consoles, run tweaked
Android firmware [17]. Overall, more than 1.4 billion active devices are currently
powered by Android [14]. This huge user-base was achieved by Google thanks

?
We thank the anonymous reviewers for their comments that allowed to improve the paper. We are
also very grateful to William Enck for shepherding the paper and suggesting many improvements
to it. The work of Olga Gadyatskaya was supported by the Luxembourg National Research Fund
(C15/IS/10404933/COMMA).

to, among all, frequent updates of the operating system that keep introducing
new features and improving performance.

Yet, the wide landscape of device types and platform versions gives rise to
compatibility challenges. While the latest devices are relatively well-updated,
others can be left behind, or even never updated after the release. For instance,
Google reported that 2.6% of devices that had visited the Google Play Store in
March 2016 ran Android 2.3 released in 2011 [13]. At the same time, third-party
applications are typically updated frequently, yet some of them are unsupported
by the developers after a while. Therefore, there is a high fragmentation of the
eco-system, and many problems, including security ones, emerge due to discrep-
ancies in update cycles of the platform and apps.

The Android permission system regulating access of apps to device capabil-
ities and system components, such as telephony, file system, sensors, networks,
etc., is a crucial part of the Android security model. Not surprisingly, from the
beginning it was, and still is, central to many studies of Android security (it
is featured in [23, 25, 28, 31, 33, 35, 41, 45, 46, 49, 50, 52, 53], to mention a few).
However, only some of them acknowledged that the permission system was not
stable. Among those, an early investigation by Enck, Ongtang and McDaniel [31]
reported on the substantial shift introduced to the permission system across the
earliest Android releases. Since that time, the vast majority of Android studies
still rely on the same understanding introduced in this seminal paper.

The emergence of runtime permissions in Android 6.0 forced us to
take a closer look at the permission system design. In this paper we analyze the
changes in the permission system introduced in the last 6 years and provide an
updated view on the current architecture of the Android permission system since
its description in [31]. We reveal the core changes that need to be considered
during the security analysis, the main of which are the following:

– Runtime permissions. In Android 6.0, permissions are divided into install-
time and runtime. Normal and signature (with some exceptions) permissions
are permanently assigned upon the app installation, while dangerous permis-
sions are now granted at runtime, and the user may revoke them at any time.

– Runtime permissions are granted on the group basis. If an app re-
quires runtime permissions related to the same permission group, once one
of them is granted, others are granted as well. Instead of enabling more fine-
grained control of dangerous functionality, Android 6.0 does the opposite.

– Some signature permissions can be obtained by third-party appli-
cations. The Android community is used to consider signature permissions
to be install-time granted to apps that have the same digital signature as the
package declaring the permission. However, several new types of signature
permissions appeared in Android that can be obtained by third-party apps
not conforming to this condition.

– The signature|system protection level is deprecated. Currently, the
signature|system protection level is marked as deprecated and should not be
used neither for custom (third-party), nor for platform permissions.

2

– Some dangerous permissions are now granted without user’s con-
sent. In Android 6.0, 22 permissions, previously considered as sensitive, are
granted by default and the user cannot revoke them in any way. For instance,
the INTERNET, BLUETOOTH, NFC permissions are now automatically granted
at app installation. Previously they had to be approved by the user.

Considering the aforementioned modifications, it is clear that the Android
community needs to update its view on the permission system and to evaluate se-
curity implications of the changes. To address this need, in this paper we present
an updated security architecture of the system and important internal details of
its implementation. Furthermore, to assess the compatibility challenges impli-
cations, we performed a thorough longitudinal study of the Android permission
system that yielded many interesting findings, e.g.,:

– Even though the signature|system protection level is deprecated, permissions
of this level still exist in the system. Moreover, 9 permissions of this type
were added in the Android 6.0 release itself. We have submitted to Google
several patches to fix this issue in Android Open Source Project (AOSP),
and some of them have already been merged into the master branch.

– The runtime permissions have backward compatibility issues. Developers
that expect their apps to run on older platform versions are still required
to make a runtime check for permissions. However, the permissions that did
not exist on some platform version are always denied (while they should not
be required at all). We have found 8 such permissions, e.g., ADD VOICEMAIL.

– Some non-dangerous permissions are assigned to permission groups, although
there is no reason for this. We found 8 such permissions, e.g., USE FINGERPRINT.
We consider these to be coding nits that could be fixed by Google developers.

Our findings emphasize considerable flaws that emerged due to the high
change rates in the permission system design. Considering the aforementioned
discrepancies in update cycles of platforms and apps, it is time for the security
community to re-evaluate the attack surface of the Android permission system.

Roadmap. §2 outlines the established view on the Android permission sys-
tem. §3 incrementally updates this view, while §4 gives internal details of the
permission system implementation. §5 presents our quantitative analysis of evo-
lution in the permission system, and §6 presents the key findings of our qualita-
tive study. Finally, §7 discusses related work, and §8 concludes the paper.

2 The Established View on the Permission System

By default, all Android apps are executed as low-privileged processes at the
Linux kernel level. Thus, every app has access only to a limited set of system
capabilities. At the same time, to be fully-functional an app should be able
to interact with other applications and obtain data from various system ser-
vices (e.g., location or telephony) running in other processes. To enable these
interactions, Android provides a special inter-component communication (ICC)

3

protocol called Binder. Certainly, these communications should not be arbitrary,
i.e., only approved interactions must be possible within the system. The Android
permission system provides such access control mechanism. Permissions, which
are unique security labels, are assigned to sensitive resources. Once an app is
granted with the permission, it receives access to the corresponding protected
object, otherwise interactions with the resource are prohibited.

A permission must be declared by the developer in the AndroidManifest.xml
file of the app (in the special permission tag) and assigned to the protected re-
source (either in the manifest file or by performing corresponding checks in the
code). Once declared, other packages may ask for access to the object by re-
questing the corresponding permission using the uses-permission tag of their
own AndroidManifest.xml file. Platform permissions are declared within the
Android operating system itself: either in the Android framework or in the pack-
ages supplied with the platform. Third-party app developers may also declare
their own custom permissions and use them to protect sensitive components of
their apps.

Upon declaration, any Android permission is assigned with a protection level.
It defines what apps can be granted with the corresponding permissions, and how
this process occurs. Starting with Android 0.9 [31], permissions were divided into
4 levels: normal, dangerous, signature and signature|system. According to the es-
tablished permission system view, the least sensitive normal permissions were
granted automatically to any app declaring these permissions, while more sensi-
tive dangerous permissions were granted only after user’s explicit consent during
app installation. If the user wanted to refuse even a single permission, the appli-
cation would not be installed on the device. Signature permissions were granted
only if packages declaring the permission and using it are signed with the same
certificate. Finally, permissions of the signature|system protection level acted like
signature permissions, but could be additionally granted to apps installed into
the system partition. Thus, prior to Android 6.0 all permissions were granted or
denied once and for all at the installation time.

A permission can belong to a permission group that clusters together secu-
rity labels according to particular functionality. Permission groups were mainly
introduced to simplify the presentation by grouping permissions together. Yet,
before Android 6.0 groups were not widely adopted in the “vanilla” Android,
although they were used in the Google Play client application.

This vision of the Android permission system migrated for a long time from
one research paper to another. In the meanwhile, the system did not stand still,
but continuously changed all that time. However, the modifications were not
that crucial, and remained mostly unnoticed.

3 New Android Permission System Overview

In Android 6.0, all permissions are divided into installation and runtime.
Roughly, this division occurs in the following way: normal, signature and signa-
ture|system permissions are permanently granted upon the app installation (yet,

4

(a) (b) (c) (d)

Fig. 1: Screenshots: a) Permission request during installation of legacy applications
in Android 6.0; b) Screen to grant or revoke “appop” permission; c) Separate screens
are developed for core permission groups to grant and revoke permissions; d) List of
additional permissions.

with some exceptions considered further), while dangerous permissions are now
checked at runtime. The signature|system protection level is deprecated start-
ing Android 6.0 and should not be used [12]. However, our analysis of permissions
defined in the platform code shows that such permissions are still abundant (see
Sec. 5 and Sec. 6 for more details).

Previously, dangerous permissions were to be approved by the user in the
special screen shown during app installation. Once approved, the app could be
instantly used and the user did not deal with permissions anymore. In Android
6.0, the screen to grant runtime permissions is not shown (for apps targeting
API 23 and up). Instead, all runtime permissions after installation are in the
disabled state and must be approved by the user once the app needs access to
the protected functionality.

To support runtime permissions, special protected API calls were added to
PackageManager allowing to grant and revoke permissions dynamically. Addi-
tionally, new APIs were added allowing app developers to check at runtime if
permissions are granted and to request them if necessary [19]. Within the Set-
tings app, the users are provided with two screens to review, grant and revoke
runtime permissions: on the first screen permissions are grouped on per app
basis, on the second – per permission group.

Obviously, new applications must be forward compatible with the older An-
droid versions, because only a small fraction of devices runs the newest Android
(in April 2016 only 5% of devices ran Android 6.x [13]). To ensure compatibil-
ity, Google provided a special compatibility library that proxies the calls for
checking granted permissions (ContextCompat.checkSelfPermission). How-
ever, this proxy call must still rely underneath on the permission check func-
tionality available in the previous releases, which, not surprisingly, is based on

5

the Context.checkPermission API call. In previous Android versions permis-
sions are granted upon installation, thus, the check will always pass, and new
runtime permission request functionality will not be called. However, we found
out that this functionality does not always work as expected (see Sec. 6).

Backward compatibility of legacy apps with the new version of Android is
provided through the AppOps system allowing users to grant and revoke permis-
sions at runtime through a dedicated user interface within the Settings system
application. It shares the same interface with the runtime permission manager.
This hidden app permission manager unofficially appeared in Android 4.3. Un-
fortunately, access to this component was suppressed in Android 4.4.2 and reap-
peared only in Android 6.0. However, AppOps handles only platform permissions
and, thus, cannot enforce custom dangerous permissions declared by a developer.
Upon installation of a legacy app through the installer on device the user is still
presented with the “old” grant permission screen (see Fig. 1a). The user must
agree with the presented permissions, or the app will not be installed. This be-
havior differs from the one of the apps targeting Android 6.0, what results in
some user experience inconsistencies. We describe them in details in Sec. 6.

Runtime permissions are granted per permission groups, i.e., if one per-
mission from a group is granted or revoked, the same happens for all permissions
in this group. For instance, if an app is granted with the READ CONTACTS per-
mission, it automatically receives WRITE CONTACTS (if requested), because they
both belong to the CONTACTS permission group. Android 6.0 defines nine permis-
sion groups for dangerous permissions: CALENDAR, CAMERA, CONTACTS, LOCATION,
MICROPHONE, PHONE, SENSORS, SMS, STORAGE. While the app developers still have
to declare permissions from these groups individually, the end-users only grant or
revoke access per permission groups, and they are oblivious to which individual
permissions the app requests.

Before it was assumed that third-party applications cannot obtain any sig-
nature permission if they are not signed with the same certificate. Yet, in An-
droid 6.0 new permissions called appop were added. These signature permissions
(PACKAGE USAGE STATS, WRITE SETTINGS and SYSTEM ALERT WINDOW) can now
be granted to third-party apps after an explicit user’s consent through Settings.

We continue to explore the changes to the Android permission system and
their implications for security analysis in Sec. 6.

4 Permission System Implementation Details

The behavior of permissions is controlled through assigning special string values
to the attributes (android:protectionLevel and android:permissionFlags)
upon permission declaration in the AndroidManifest.xml file. During the instal-
lation of a package, these values are parsed influencing on the bits of two 32-bit
integer fields (protectionLevel and flags) of the PermissionInfo class. This
section reviews how the bits of these two fields affect the permissions behavior.

6

016 F
L

A
G

_
P

R
IV

IL
E

G
E

D

F
L

A
G

_
D

E
V

E
L

O
P

M
E

N
T

F
L

A
G

_
A

P
P

O
P

F
L

A
G

_
P

R
E

2
3

F
L

A
G

_
IN

S
T

A
L

L
E

R

F
L

A
G

_
V

E
R

IF
IE

R

F
L

A
G

_
P

R
E

IN
S

T
A

L
L

E
D

MASK_FLAGS MASK_BASE

PROTECTION

LEVEL

...

(a)

03032 F
L

A
G

_
C

O
S

T
S

_
M

O
N

E
Y

F
L

A
G

_
H

ID
D

E
N

F
L

A
G

_
IN

S
T

A
L

L
E

D

...

(b)

Fig. 2: “Protection Level” (2a) and “Additional Flags” (2b) field map.

4.1 Protection Level

Fig. 2a shows a map of the lower 16 bits of the protectionLevel field (the
higher 16 bits are currently not in use). The lower 4 bits are used to specify
the protection level of a permission. The protection level value is determined by
applying bitwise AND operation to the protectionLevel field and the MASK BASE

constant. Since a permission can only have one protection level, its values have
sequential order, where the normal protection level is equal to 0, dangerous
is 1, signature – 2, and signature|system is equal to 3. Interestingly, although
signature|system level has a higher protection level value, signature permissions
are considered as more sensitive. If a permission protection level is not specified
in the manifest file, by default, signature protection level is used.

Protection level flags can be used only with signature permissions. Flags with
other protection levels will generate an error at the time of manifest parsing.
Protection level flags are masked with the MASK FLAGS constant.

The first flag FLAG PRIVILEGED enforces that only apps either signed with the
same certificate or installed into the special location can obtain the permission.
Until Android 4.4 all applications installed on the system image were granted
with these privileged permissions by default. This means that even unprivileged
system apps, e.g., Calculator, were able to obtain such permissions. To reduce
the attack surface, system apps were later divided into the ordinary and privi-
leged ones [9]. The ordinary system apps remain in the /system/app directory,
but are not granted with privileged permissions anymore. To obtain privileged
permissions an app must be installed into a separate /system/priv-app folder.
Besides setting this flag directly, the developer can achieve the same permission
behavior by setting the protection level to signature|system (deprecated since
Android 6.0).

In Android 4.1 [12], the development permissions (marked with the flag
FLAG DEVELOPMENT) were introduced. These permissions usually protect the func-
tionality required to perform development tasks, e.g., read system logs (READ LOGS).
An app can request these permissions, but they will not be automatically granted.
At runtime the user can grant and revoke these permissions on demand by using
special commands pm grant and pm revoke of the Android shell [30].

7

FLAG APPOP was introduced in Android 5.0 [4], although explicitly it has
started to be used only with Android 6.0. This flag was added to allow selective
access to certain critical platform operations protected by signature permissions
to third-party apps, after an explicit approval from the user. As we mentioned,
typically, the signature protection level ensures that the corresponding platform
permission is automatically granted at install time to the apps signed with the
same certificate as the system image. Yet, this flag relaxes the requirement that
the protected functionality can be used only by the system components. However,
upon installation, access to the resources is disabled by default to third-party
apps. For every permission of this appop type there is a separate configuration
screen, where the user may explicitly grant or revoke access to these opera-
tions for system and third-party apps. E.g., Fig. 1b shows the screen for the
PACKAGE USAGE STATS permission. The flag name shows that the enforcement of
this type of permissions happens through the AppOps system.

FLAG PRE23, as the name suggests, indicates that the corresponding permis-
sion is automatically granted to apps targeting pre-6.0 Android (API levels less
than 23) versions [11]. For instance, the permission to draw a window over other
apps SYSTEM ALERT WINDOW before Android 6.0 had the dangerous level, and
thus was granted automatically upon installation. In Android 6.0 the protection
level of this permission was changed to signature. However, apps targeting pre-
vious API versions are not aware of this change. Thus, during their execution
an invocation of the functionality protected with this permission will generate
an error. FLAG PRE23 permits to overcome this issue by automatically granting
the permission with this flag set to apps targeting previous versions of Android.

The flags FLAG INSTALLER and FLAG VERIFIER introduced in Android 6.0 [5]
indicate that permissions are automatically granted to the packages set as the re-
quired installer and verifier (see more in [30]). However, to use these permissions
the installer package must be installed on the system image, while the verifier
package must be additionally granted with the PACKAGE VERIFICATION AGENT

permission which has the signature|privileged protection level.

Finally, FLAG PREINSTALLED added in Android 6.0 [8] indicates that the per-
mission can be granted not only to the apps installed into the privileged folder,
but to any app installed in the system partition.

4.2 Permission Flags

Permission flags were introduced in Android 4.2 [3]. Internally, permission flags
are also represented as an integer 32-bit field which map is shown in Fig. 2b.
These flags are controlled through the android:permissionFlags attribute of
the permission tag. It should be noted that only the FLAG COSTS MONEY and
FLAG HIDDEN flags may be set through this attribute, while FLAG INSTALLED is
not accessible through a permission declaration.

The flag FLAG COSTS MONEY introduced in Android 4.1 [3] influences how a
permission with this flag set is presented to a user. These permissions are marked
with the “coins” sign displayed on the screen shown during app installation (in

8

Table 1: Versions of the Android platform used in our study
API Branch Codename Release date
level (mm-dd-yyyy)

23 android-6.0.0 r1 Marshmallow 10-05-2015
22 android-5.1.0 r1 Lollipop 03-09-2015
21 android-5.0.1 r1 Lollipop 12-02-2014
19 android-4.4 r1 KitKat 10-31-2013
18 android-4.3 r1 Jelly Bean 07-24-2013
17 android-4.2 r1 Jelly Bean 11-13-2012
16 android-4.1.1 r1 Jelly Bean 07-11-2012
15 android-4.0.3 r1 Ice Cream Sandwich 12-16-2011
14 android-4.0.1 r1 Ice Cream Sandwich 10-21-2011
10 android-2.3.3 r1 Gingerbread 02-09-2011
9 android-2.3 r1 Gingerbread 12-06-2010
8 android-2.2 r1 Froyo 05-20-2010
7 android-2.1 r1 Eclair 01-12-2010
6 android-2.0.1 r1 Eclair 12-03-2009
5 android-2.0 r1 Eclair 10-26-2009
4 android-1.6 r1 Donut 09-15-2009

versions before Android 6.0). Interestingly, there are no restrictions on the us-
age of this flag, thus, even custom permissions could use it. Similarly, the flag
FLAG HIDDEN added in Android 6.0 [7] also influences presentation, making a
permission hidden from the user’s sight. This flag is used for the platform per-
missions that have become deprecated and removed from the system. However,
a developer may use this flag to conceal custom dangerous permissions.

The flag FLAG INSTALLED was introduced in Android 6.0 [10]. It is set by
the operating system itself. This flag shows that the permission has been ac-
tually installed into the system, and influences presentation of permissions. For
instance, if a permission has not been declared by an application but is requested
by another app, it will not be shown in the list of requested permissions.

5 Analysis of Permission Changes

To investigate empirically how the Android permission system evolved across
platform updates, we retrieved the source code of the Android platform for
versions released from 2009 till 2015 that resulted in the API level change
(the latest release at the time of writing is Android Marshmallow). Table 1
overviews the Android platform releases covered in our study.

We performed the analysis aiming at detection of odds in the permission sys-
tem. In our study we focus on the Android platform permissions, and we do not
cover custom permissions, which are defined by third-party applications to pro-
tect access to their resources. We divide platform permissions into 4 categories:

– sample – permissions that are declared by the sample apps shipped with the
platform source code (appeared from API 21).

– test – permissions that are declared in the manifest files of packages devel-
oped for testing purposes;

– package – permissions that are declared in various packages that complement
the framework, and that are not of test or sample groups;

9

4 5 6 7 8 9 10 14 15 16 17 18 19 21 22 23
API Version

0

50

100

150

200

250

300

350

N
um

be
r

O
f P

er
m

is
si

on
s

normal
dangerous
signature
signature|system

(a)

4 5 6 7 8 9 10 14 15 16 17 18 19 21 22 23
API Version

0

5

10

15

20

25

30

35

40

45

N
um

be
r

O
f P

er
m

is
si

on
s

normal
dangerous
signature
signature|system

(b)

Fig. 3: Number of permissions for every platform release: a) for core permissions; b)
for package permissions.

– core – permissions that are declared in the core Android manifest file located
in the frameworks/base/core/res folder;

The categories discussed above reflect the basic purposes why permissions are
used within AOSP [1]: some permissions (from the categories core and package)
are the “true” permissions used for access control, while others are auxiliary
utilized in example applications (sample) or for testing (test). We focus our
study on core and package permissions, because they are the ones that truly
influence the behavior of the operating system.

The study done by Wei et al. in 2012 revealed that the number of permissions
steadily increased with each Android release [49]. Our study, as of the beginning
of 2016, confirms that finding and shows that the total amount of permis-
sions declared within the Android platform continues to grow, reaching
314 in API 23 compared to 165 in API 15 (the last version analyzed by Wei et
al. [49]). Fig. 3a and Fig. 3b illustrate the growth of the number of permissions
for core and package categories correspondingly. Obviously, the main contribu-
tor to the continuous increase are core permissions. The amount of the package
permissions fluctuates, although still showing the overall upward trend. These
plots also demonstrate the changes in the amounts of permissions of different
protection levels. Table 2 characterizes the changes between consequent API lev-
els. The data confirms that almost every Android API release (besides the API
6, 7, 10) introduced new permissions, as access to the new platform functionality
often needs to be guarded.

Interestingly, while the total amount of permissions increases with every new
Android release, the number of permissions with normal and dangerous levels,
which guard the functionality exposed to third-party applications, remains fairly
stable. Therefore, from the developer perspective, the cognitive load did not
increase much in terms of new permissions (however, the amount of compatibility
issues to be handled is still growing due to the fluctuations in permissions). At

10

Table 2: Permission changes in core and package categories
API Amount of permission changes
level Added Removed Type Protection level changed

changed inc dec total

5 14 2 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 13 2 1 5 1 6
9 8 6 0 4 0 4
10 0 0 0 1 0 1
14 30 1 0 5 1 6
15 3 1 0 0 0 0
16 20 0 0 6 0 6
17 21 0 0 7 8 15
18 10 1 0 0 0 0
19 28 2 0 2 0 2
21 54 9 0 6 3 9
22 11 3 0 0 0 0
23 46 8 0 7 128 135

the same time, security researchers, and platform and system app developers
have to cope with more and more permissions.

At the same time, permissions are not only added. Throughout the plat-
form evolution, many permissions were removed or changed their protection
level. We analyzed code commits to AOSP [1] and found the following reasons
why permissions are removed. Most of the package permissions were removed,
because either the corresponding packages were deleted from the system, or
the functionality of these packages became closed-source. Some permissions be-
came obsolete because the corresponding functionality was either provided to
all applications (e.g., the backup functionality protected with the BACKUP DATA

permission was made available to all apps in API 8) or merged with other func-
tionality, as in case of GRANT REVOKE PERMISSIONS (removed in API 23) used to
protect the runtime granting of development permissions. Interestingly, while
the permission READ OWNER DATA was removed in API 9, more than 5 years
ago, the current documentation still contains references to it3. Additionally,
permissions may be simply renamed (e.g., BROADCAST SCORE NETWORKS became
BROADCAST NETWORK PRIVILEGED). All these perturbations hinder understanding
of the permission system and its changes across Android releases.

According to Table 2, there was only 1 case of the category change: the
ACCESS CACHE FILESYSTEM permission in API 7 was in the package category,
while in API 8 its declaration was moved to the core Android Manifest file.

As for the protection level changes, Table 2 reports the number of permissions
that increased or decreased4 their protection level.

The overall trend in the table shows that, prior to Android 6.0, permissions
had a tendency to increase their protection level with the lapse of time. However,

3 http://developer.android.com/guide/topics/manifest/manifest-intro.html
4 For this table we interpret the protection levels normal, dangerous, signature and
signature|system as an ordered set, where normal corresponds to the least critical
permissions and signature|system – to the most critical.

11

http://developer.android.com/guide/topics/manifest/manifest-intro.html

the majority of protection level updates were related to changing the protection
level from signature to signature|system, what is actually not a restriction in
control. Although internally signature|system permissions are assigned with a
higher value, in general the signature permissions are more restrictive, because
they allow the apps to obtain these permissions only if the declaring and re-
questing packages are signed with the same certificate. Permissions of the sig-
nature|system level can be also granted if the app is installed into the special
system folder, what allows vendors to use this functionality to vest pre-installed
applications with additional capabilities. For instance, the ability to shutdown
the system (protected with the SHUTDOWN permission) in API 14 was also given
to vendor apps. At the same time, other changes of protection level mostly aimed
at limiting the privileges of third-party apps. E.g., in API 16 the READ LOGS per-
mission allowing to read the system log that may contain sensitive data, changed
level from dangerous to signature|system.

Before API 23 there were not so many cases of decreases in the protection
level. These were mostly related to relaxing dangerous permissions in order to
avoid bothering the end-users with their approval. For instance, the WAKE LOCK

permission allowing an app to prevent the system from going into the sleep mode
changed its level from dangerous to normal in API 17.

There are permissions that changed their protection level several times. E.g.,
permission BATTERY STATS initially appeared as normal. In API 17 it became
dangerous, and in API 19 it emerged as a signature|system permission. Finally,
in API 23 it became a signature permission. Thus, during its life BATTERY STATS

has had all possible security levels.

The API level 23 introduced significant changes in protection levels
of permissions. Now, there are only a few dangerous permissions, as opposed to
all previous Android releases. Table 2 shows that the protection level decreased
for 128 permissions. The main reason for this change is deprecation of the signa-
ture|system protection level (104 permissions became signature). Moreover, the
shift to runtime permissions forced platform developers to reconsider the entries
in the dangerous set, leaving only the most critical ones that can be compre-
hended by users. Consequently, some dangerous permissions were transformed
into normal (22 cases). Sec. 6 discusses the effects of these changes.

Permission groups show more stable behavior with respect to changes. In An-
droid 1.6 (API 4) there were 11 groups. As permission groups were not widely
used, this number remained the same till API 17, when 19 new groups were
added. In API 18 one additional group appeared, resulting in 31 total. There
is not much information why this reorganization happened in these 2 consecu-
tive releases. However, this may be connected with the Google Play installer app
starting to cluster permissions according to their groups [18]. In Android 6.0 per-
mission groups were completely reconsidered once again. There are 4 new groups
added, while 26 were removed, resulting in 9 groups total. This radical change
happened because dangerous permissions are now granted on per-group basis.
Thus, the amount of groups was considerably reduced to avoid overwhelming
users with lots of permissions.

12

6 Key Findings

Ideally, the security critical components of a system should remain quite stable
to ensure easy security assessment. Unfortunately, this does not hold true in
case of the Android operating system. This section reports on our findings and
doubts inferred during the analysis of the evolution of the permission system.

6.1 Important changes in API 23

1) Runtime permissions. Undoubtedly, from the security perspective one of
the biggest changes in Android 6.0 is the introduction of runtime permissions.
Such a change requires efforts from both the OS designers and third-party de-
velopers to ensure backward compatibility of old apps with the new platform
version, and forward compatibility of new apps with older platforms.

Backward compatibility of old apps with the new platform. Although
the intention was to make legacy (targeting the Android API levels before 23)
and new (API level 23) apps to behave in the same way, the differences are
quite substantial. First, during the installation of a legacy app the user must
agree with the requested permissions, or it will not be installed (see Fig. 1a),
while apps targeting API 23 will be installed silently. Second, after the installa-
tion all dangerous permissions of legacy apps will be in the granted state, while
runtime permissions of new apps will be disabled. Third, and most important,
in Android 6.0 only core permissions can granted and revoked to legacy apps,
while if an app targets API 23 it is also possible to adjust custom dangerous
permissions. Furthermore, some subtle differences require high attention from
developers. For instance, developers must ensure that the application, which
functionality is called, has been already granted with the permission to access
this functionality [43]. Additionally, in order to use an external library, which re-
quires access to the protected functionality, the developers must handle properly
runtime permission requests [42].

Forward compatibility of new apps with older platforms. The new
runtime permission functionality has not come transparently for the applica-
tion developers. According to the new guidelines [19], before making an API
call protected with a permission, the app should ascertain that the appropriate
permission has been granted. If not, the developer must ask for the permis-
sion, and the user can allow or deny it. Irrespectively of the user’s decision,
both cases must be handled by the developer (see Sec. 3). Unfortunately, the
check whether the permission has been granted does not always return the cor-
rect result. We found out that if a developer runs an app on the older Android
version, which has not yet declared the requested permission, the permission
check returns that the permission is denied, while actually it is not required.
We made a script that automatically identifies the permissions producing this
unexpected behavior by extracting the list of runtime permissions in Android
6.0, and comparing it with the lists of dangerous permissions in the previous
versions. We found 8 such permissions added after API 4, namely USE SIP

(added in API 9); ADD VOICEMAIL (in API 14); WRITE CALL LOG, READ CALL LOG,

13

READ CELL BROADCASTS, READ EXTERNAL STORAGE (in API 16); BODY SENSORS (in
API 215); and READ TV LISTINGS (in API 23). These peculiarities are not de-
scribed in the Android documentation, although some developers have started to
experience problems6. At the same time, there is no bullet-proof solution how to
overcome this issue at the operating system level (it is possible to implement the
corresponding check in apps themselves [44]). As previous versions of Android
are usually not supported (patches for older versions are rarely produced and de-
ployed), it is practically impossible to deploy patches on all devices running older
versions of Android. Handling through patching the Android support library is
not a solution also, because developers may simply not use it in their apps. Thus,
the developers must consider these cases in their applications themselves. In any
case, this issue must be at least specified in the documentation.

2) Runtime permissions are granted per permission groups. Clearly,
this decision was made to reduce the amount of interruptions for asking permis-
sions at runtime and to facilitate user’s understanding of permissions [36]. At the
same time, experienced users are not given any option to control permissions in
a more fine-grained manner. Similar functionality introduced for the first time
in the Google Play client received negative feedback both from the users and
security analysts [18]. Moreover, this architectural decision implies that security
researchers have to consider permission groups in their analysis of apps.

We can remark here that for a long time security researchers have asked for
better and more fine-grained control over sensitive data and functionality on
Android (e.g., [32, 41, 45], to mention just a few). Android 6.0 clearly moves in
the opposite direction. Arguably, the users often did not understand the impli-
cations of various dangerous permissions, and the reduced complexity of permis-
sions could be beneficial for some end-users [36]. Therefore, new evaluations and
studies of the system are required from the community.

3) UID sharing. There was an attempt to change permission granting to on
per package basis. It failed, and permissions are still granted per UID [2]. This
creates an additional attack possibility for collaborative applications sharing the
same UID to access the functionality protected with runtime permissions. As we
explained in Sec. 3, in Android 6.0 the screen with the required runtime permis-
sions is not shown to the user during app installation, but the user’s approval
for these permissions is requested at the runtime. Thus, the user finds out about
the required permissions only once they are requested. If two applications share
the same UID, then if a user grants a runtime permission to one app, the sec-
ond will be automatically granted with the same permission, and the user will
be unaware of this fact. For instance, the Microsoft Excel [15] and Microsoft
PowerPoint [16] apps share the same UID. Thus, if at runtime Microsoft Excel
is granted with READ EXTERNAL STORAGE permission, the Microsoft PowerPoint
app instantly receives the same permission even without user’s consent. Addi-

5 This permission was added in API 20, which we did not analyze (API 20 was devel-
oped for wearable systems).

6 http://stackoverflow.com/questions/33482474/android-marshmallow-permission-
model-on-os-4-0-read-external-storage-permission

14

tionally, the apps will also receive rights to perform the actions protected with
the WRITE EXTERNAL STORAGE permission (if it is requested by the apps), because
both permissions belong to the same group. This is clearly not the behaviour the
user expects. The effort from the OS developers should be put into this direction.

4) Signature permissions available to third-party apps. Before it was
assumed that third-party applications cannot obtain any signature permission
if they are not signed with the same certificate. However, this is not true any-
more, and any new security system for Android needs to take these permissions
into account. In our analysis we found 4 groups of exceptions that considerably
influence the security analysts. This change especially affects permission maps,
which considered before only dangerous and normal permissions as available for
third-party apps [23].

Appop permissions. Introduction of the appop permissions (with FLAG APPOP

set) entails quite substantial consequences. First of all, for every set of such per-
missions a separate activity was added where the user can grant them to an app.
Currently, there are 3 different activities responsible for granting such permis-
sions (an example is given in Fig. 1b): to grant the usage access (PACKAGE USAGE STATS),
draw over other apps (SYSTEM ALERT WINDOW), and modify system settings (WRITE SETTINGS)
privileges. Interestingly, these activities are accessed through different configu-
ration screens: the first one is located under the “Security” settings, while the
last two are on the “Configure apps” screen. This design decision is inconvenient
for the users who must look in different locations to grant these permissions.
Moreover, internally these activities are represented as 3 different classes with
the corresponding permissions hardcoded within each class. Thus, if any new
appop permission appears in the future, this will require the OS developers to
add a new class processing this permission. In our study, we have also discovered
one particular permission CHANGE NETWORK STATE, which in Android 6.0 were an
appop permission. However, with the release 6.0.1 (i.e., still within API 23) its
protection level was relaxed to normal.

Development permissions. These permissions (with FLAG DEVELOPMENT

set), although being of the signature protection level, can be granted to third-
party applications by using the pm grant shell command. While the code for
granting and revoking development permissions in Android 6.0 was merged with
the one handling runtime permissions, these groups are quite different. First,
development permissions are granted simultaneously to all system users, while
runtime – only to the current user. Second, they are not displayed in the user
interface as runtime permissions.

Pre-23 permissions. The permissions with FLAG PRE23 set are automat-
ically granted to all legacy (whose target API level is below 23) applications
requesting them.

Installer and verifier permissions. These signature permissions are au-
tomatically granted to the apps marked as required installer and verifier.

5) The deprecated signature|system protection level. Although the
signature|system protection level is now deprecated, Fig. 3a and Fig. 3b show
that there are still many permissions using this deprecated value. What is even

15

more confusing, 9 new permissions of this level appeared in API 23. We attribute
this inconsistency to the lack of communication among the groups of developers
responsible for different modules. We have developed and submitted to AOSP [1]
patches to fix these issues. Currently, out of 9 submitted patches, 2 patches were
merged into the master branch, while 3 were verified and 5 were code-reviewed.

6) Some dangerous permissions are now normal. In Android 6.0 the
amount of dangerous permissions was considerably reduced. For 22 dangerous
permissions the protection level was lowered to normal. Thus, the users now
do not have any control over functionality protected with these permissions:
normal permissions are not displayed and are automatically granted upon the
installation. At runtime, a user can neither check them nor revoke. For instance,
the INTERNET permission controlling the access of apps to the Internet, which
was widely used by malware [55] especially in combination with other permis-
sions [32], is now granted automatically.

From the security perspective, this is one of the most controversial changes,
because many permissions regarded before as sensitive are now granted automat-
ically. The fact that 22 permissions (including, e.g., NFC, BLUETOOTH, WRITE PROFILE,
MANAGE ACCOUNTS) have been demoted in the security level emphasizes that the
Android security architecture is far from being stable.

6.2 Interesting findings

1) Protection level flags. Developers cannot use protection level flags in their
third-party apps. An application containing permission declaration with pro-
tection level flags will not pass validation checks during the compilation. The
developers may only select one of the four main protection levels for their cus-
tom permissions: (normal, dangerous, signature and signature|system). At the
same time, the validation check is performed only during application compila-
tion. During installation of an app similar checks are not fired, and it is possible
to add a protection level flag through app repackaging, e.g., using apktool7.
Clearly, the checks in IDEs should conform to the new permission specifications,
i.e., the signature|system protection flag should be removed, and there should
be a possibility for third-party application developers to assign protection level
flags to their custom permissions.

In Android 6.0 the protection level flag FLAG PREINSTALLED was added. Pre-
viously, all signature permissions were divided into privileged, which could be ob-
tained only if a system app was installed in the special folder, and others, which
could be obtained by apps signed with the same certificate. FLAG PREINSTALLED

relaxes this strict division, and permits all system apps to receive automatically
the permissions with this flag set.

2) Additional flags. Currently there are no restrictions for a third-party
developer on assigning additional flags to custom permissions. For instance, it is
possible to declare a permission with FLAG COSTS MONEY set. As a result, on older
systems you will see the corresponding permission accompanied with a special

7 https://ibotpeaches.github.io/Apktool/

16

https://ibotpeaches.github.io/Apktool/

coins icon. Similarly, the usage of FLAG HIDDEN is also not restricted. This may
be used by a developer to conceal a permission from the list of app’s dangerous
permissions. While we cannot say if this functionality can be used with malicious
purposes, these edge cases violate the principle of least privilege.

Moreover, as mentioned in Sec. 4.2, 2 out of 3 flags can be set by a devel-
oper, while the third flag FLAG INSTALLED can be installed only by the operating
system. Such behavior is considered as security anti-pattern, when publicly ac-
cessible data is combined with private information.

3) Hard-coded screens for granting permissions. Every permission
group defined in the core AndroidManifest.xml file has its own screen, where
a user grants and revokes permissions assigned to this group (see Fig. 1c for the
entry points to these screens). At the same time, permission groups defined in the
system or third-party packages do not have dedicated screens. The “Additional
permissions” screen collects all of them. There is no separation between groups
and single permissions on this screen. E.g., Fig. 1d shows that the permission
group (test permission group) and the single permission (test single permission)
are listed on the same screen along with other groups defined in system packages.
As we mentioned, the groups and single permissions will be displayed on this
screen only if the corresponding package targets API 23.

4) Permission groups. We mentioned that there is no restriction on adding
custom permissions to the system permission groups. If a custom permission has
the dangerous protection level, then, when an app requests this permission at
runtime, it is also granted with all permissions from the same group. At the
same time, if the protection level of a custom permission is not dangerous, the
remaining permissions from the group will not be automatically granted. Thus,
to our point of view, there is no reason to group permissions beside those with
the dangerous protection level. We analyzed system non-dangerous permissions
to detect if there are any assigned to groups. For the API level 23 we found 6 such
package permissions and 2 core permissions. For example, the USE FINGERPRINT

permission assigned to the SENSORS permission group has the normal protection
level, while ACCESS IMS CALL SERVICE belonging to the PHONE group has the
signature|system level. We do not see reasons for this assignment and expect
these issues to be fixed in the future Android releases.

5) Permission declaration duplicates. During our analysis we found that
some permission declarations are duplicated even within AOSP. The most fre-
quent duplicates are declarations of INSTALL SHORTCUT and UNINSTALL SHORTCUT

permissions. These flags are declared both in the core and package manifest files.
Before API 19 there were no declarations of these permissions on the core level,
but due to a bug they were added to the core manifest file [6]. Interestingly,
these permissions in the core and packages manifest files have different protec-
tion levels: normal in the former case and dangerous in the latter. Additionally,
while exploring this issue, we discovered that in API 17 the declarations of two
permissions (SET SCREEN COMPATIBILITY and CHANGE CONFIGURATION) were du-
plicated even within the core file. This shows that some classes and configuration

17

files reached critical complexity within AOSP. It is necessary either to refactor
them, or to use extensively static analyzers to prevent these inconsistencies.

7 Related Work

Studies in the literature investigated many aspects of the Android permission
system [34, 37]. Indeed, the permission system is a cornerstone of the Android
security model [31], while permission misuse is a great concern [27, 51], and
permission request patterns in apps are widely used for pinpointing malicious
or dubious behavior (e.g., [21, 28, 46, 52]). At the same time, Android develop-
ers require guidance for understanding permissions and using them correctly.
For example, [35] and [26] looked at permission enforcement in Android and
have shown that the principle of least privilege was often neglected by devel-
opers. Many studies looked into improving the permission system design and
proposing more secure or more usable solutions (e.g., [29,41,45,54]), while some
researchers argued that finer granularity of permissions could be viable [38]. In
absence of a reliable documentation from Google, researchers had also to provide
a means of linking permissions to precise platform APIs that are protected with
these permissions (a permission map) [23,24,26,35,40,48]. Outside the Android
platform, smartphone permission systems were explored in [22,39,47].

Wei et al. [49] have performed an early study of the permission system evolu-
tion in Android demonstrating that the permission system has become even more
complex over time from the user’s perspective (since its introduction in 2008 till
the study publication in 2012). [49] revealed that the principle of least privilege
was more and more violated with the time (the amount of overprivileged apps
had consistently grown). Moreover, the permission system had become more
complex: the total number of permissions had increased, and the amount of
dangerous permissions had grown.

Au et al. [23] performed another longitudinal study of Android permissions
with a focus on the sensitive API and permission changes spanning Android ver-
sions 2.2 up to Android 4.0. This study showed that the number of documented
APIs requiring permissions had grown significantly in Android 4.0, and that
many APIs changed their permission requirements over Android versions; this
is also consistent with our own findings. The difference of our study with [23] is
that we explore the changes in the permission system in the whole, while Au et
al. concentrated on relations between permissions and API calls.

The studies by Wei et al. [49] and Au et al. [23] were reported in 2012. Thus,
our study incrementally adds to theirs by surveying also more recent platform
versions. To the best of our knowledge, the new Android permission system
architecture, including runtime permissions, has not yet been extensively stud-
ied by the security research community. However, runtime permission requests
were previously suggested by security researchers [50], and the effect of dynamic
permission revocation on the Android apps has been empirically evaluated [33].

18

8 Conclusion

In this paper, we conducted a comprehensive study of the Android permission
system. Driven by the aspiration to understand new runtime permissions, we
discovered that the permission system has considerably evolved after its semi-
nal description in [31]. To help security researchers and Android developers to
understand better the new model and its implications, we presented an updated
view on the permission system. Besides giving the overview and intrinsic details
of the new design, we have shown its main changes during the last 6 years. At the
individual permission level we discovered and reported many issues that have
implications on the Android security state and research. These findings empha-
sise the dynamic complexity of the Android permission system that needs to be
taken into account by the community.

References

1. Android Open Source Project, http://source.android.com/, accessed:
03/31/2016

2. Commit 2af5708: Add per uid control to app ops, https://android.

googlesource.com/platform/frameworks/base/+/2af5708

3. Commit 2ca2c87: More adjustments to permissions, https://android.

googlesource.com/platform/frameworks/base/+/2ca2c87

4. Commit 33f5ddd: Add permissions associated with app ops, https://android.

googlesource.com/platform/frameworks/base/+/33f5ddd

5. Commit 3e7d977: Grant installer and verifier install permissions robustly, https:
//android.googlesource.com/platform/frameworks/base/+/3e7d977

6. Commit 4516798: Moving launcher permission to framework, https://android.
googlesource.com/platform/frameworks/base/+/4516798

7. Commit 6d2c0e5: Remove not needed contacts related permissions, https://

android.googlesource.com/platform/frameworks/base/+/6d2c0e5

8. Commit a90c8de: Add new ”preinstalled” permission flag, https://android.

googlesource.com/platform/frameworks/base/+/a90c8de

9. Commit ccbf84f: Some system apps are more system than others, https://

android.googlesource.com/platform/frameworks/base/+/ccbf84f

10. Commit cfbfafe: Additional permissions aren’t properly disabled after toggling
them off, https://android.googlesource.com/platform/frameworks/base/+/

cfbfafe

11. Commit de15eda: Scope WRITE SETTINGS and SYSTEM ALERT WINDOW
to an explicit toggle to enable in Settings, https://android.googlesource.com/
platform/frameworks/base/+/de15eda

12. Commit e639da7: New development permissions, https://android.

googlesource.com/platform/frameworks/base/+/e639da7

13. Dashboards, http://goo.gl/mFciT7, accessed: 03/31/2016

14. Google Says Android Has 1.4 Billion Active Users, http://goo.gl/aUuUNw, ac-
cessed: 03/31/2016

15. Microsoft Excel, https://play.google.com/store/apps/details?id=com.

microsoft.office.excel, accessed: 03/31/2016

19

http://source.android.com/
https://android.googlesource.com/platform/frameworks/base/+/2af5708
https://android.googlesource.com/platform/frameworks/base/+/2af5708
https://android.googlesource.com/platform/frameworks/base/+/2ca2c87
https://android.googlesource.com/platform/frameworks/base/+/2ca2c87
https://android.googlesource.com/platform/frameworks/base/+/33f5ddd
https://android.googlesource.com/platform/frameworks/base/+/33f5ddd
https://android.googlesource.com/platform/frameworks/base/+/3e7d977
https://android.googlesource.com/platform/frameworks/base/+/3e7d977
https://android.googlesource.com/platform/frameworks/base/+/4516798
https://android.googlesource.com/platform/frameworks/base/+/4516798
https://android.googlesource.com/platform/frameworks/base/+/6d2c0e5
https://android.googlesource.com/platform/frameworks/base/+/6d2c0e5
https://android.googlesource.com/platform/frameworks/base/+/a90c8de
https://android.googlesource.com/platform/frameworks/base/+/a90c8de
https://android.googlesource.com/platform/frameworks/base/+/ccbf84f
https://android.googlesource.com/platform/frameworks/base/+/ccbf84f
https://android.googlesource.com/platform/frameworks/base/+/cfbfafe
https://android.googlesource.com/platform/frameworks/base/+/cfbfafe
https://android.googlesource.com/platform/frameworks/base/+/de15eda
https://android.googlesource.com/platform/frameworks/base/+/de15eda
https://android.googlesource.com/platform/frameworks/base/+/e639da7
https://android.googlesource.com/platform/frameworks/base/+/e639da7
http://goo.gl/mFciT7
http://goo.gl/aUuUNw
https://play.google.com/store/apps/details?id=com.microsoft.office.excel
https://play.google.com/store/apps/details?id=com.microsoft.office.excel

16. Microsoft PowerPoint, https://play.google.com/store/apps/details?id=com.
microsoft.office.powerpoint, accessed: 03/31/2016

17. Not Just For Phones And Tablets: What Other Devices Run Android?, http:

//goo.gl/kQ4Pi8, accessed: 03/31/2016
18. Play Store Permissions Change Opens Door to Rogue Apps, http://goo.gl/

nJCwoY, accessed: 03/31/2016
19. Requesting Permissions at Run Time, http://developer.android.com/

training/permissions/requesting.html

20. Smartphone OS Market Share, 2015 Q2, http://goo.gl/WQwfZO, accessed:
03/31/2016

21. Arp, D., Speizenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN: Effective
and Explainable Detection of Android Malware in Your Pocket. In: Proc. of NDSS
(2014)

22. Au, K., Zhou, Y.F., Huang, Z., Gill, P., Lie, D.: Short Paper: A Look at Smartphone
Permission Models. In: Proc. of SPSM (2011)

23. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: PScout: Analyzing the Android Per-
mission Specification. In: Proc. of CCS (2012)

24. Backes, M., Bugiel, S., Derr, E., Weisgerber, S., McDaniel, P., Octeau, D.: On De-
mystifying the Android Application Framework: Re-Visiting Android Permission
Specification Analysis. In: Poster Session of IEEE EuroS&P (2016)

25. Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A Methodology for
Empirical Analysis of Permission-based Security Models and Its Application to
Android. In: Proc. of CCS (2010)

26. Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Automatically Securing
Permission-based Software by Reducing the Attack Surface: An Application to
Android. In: Proc. of ASE (2012)

27. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Reza-Sadeghi, A., Shastry, B.: To-
wards Taming Privilege-Escalation Attacks on Android. In: Proc. of NDSS (2012)

28. Chen, K.Z., Johnson, N., D’Silva, V., Dai, S., MacNamara, K., Magrino, T., Wu,
E., Rinard, M., Song, D.: Contextual Policy Enforcement in Android Applications
with Permission Event Graphs. In: Proc. of NDSS (2013)

29. Conti, M., Crispo, B., Fernandes, E., Zhauniarovich, Y.: CRêPE: A System for
Enforcing Fine-Grained Context-Related Policies on Android. IEEE Transactions
on Information Forensics and Security 7(5), 1426–1438 (2012)

30. Elenkov, N.: Android Security Internals: An In-Depth Guide to Android’s Security
Architecture. No Starch Press, 1st edn. (2014)

31. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security. IEEE
Security and Privacy Magazine 7(1), 50–57 (2009)

32. Enck, W., Ongtang, M., McDaniel, P.: On Lightweight Mobile Phone Application
Certification. In: Proc. of CCS (2009)

33. Fang, Z., Han, W., Li, D., Guo, Z., Guo, D., Wang, X.S., Qian, Z., Chen, H.:
revDroid: Code Analysis of the Side Effects After Dynamic Permission Revocation
of Android Apps. In: Proc. of ASIACCS (2016)

34. Fang, Z., Han, W., Li, Y.: Permission based Android Security: Issues and Coun-
termeasures. Computers & Security 43 (2014)

35. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android Permissions De-
mystified. In: Proc. of CCS (2011)

36. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android Permis-
sions: User Attention, Comprehension, and Behavior. In: Proc. of SOUPS (2012)

37. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and Enhancing Android’s
Permission System. In: Proc. of ESORICS (2013)

20

https://play.google.com/store/apps/details?id=com.microsoft.office.powerpoint
https://play.google.com/store/apps/details?id=com.microsoft.office.powerpoint
http://goo.gl/kQ4Pi8
http://goo.gl/kQ4Pi8
http://goo.gl/nJCwoY
http://goo.gl/nJCwoY
http://developer.android.com/training/permissions/requesting.html
http://developer.android.com/training/permissions/requesting.html
http://goo.gl/WQwfZO

38. Fratantonio, Y., Bianchi, A., Robertson, W.K., Egele, M., Kruegel, C., Kirda, E.,
Vigna, G.: On the Security and Engineering Implications of Finer-Grained Access
Controls for Android Developers and Users. In: Proc. of DIMVA (2015)

39. Gadyatskaya, O., Massacci, F., Zhauniarovich, Y.: Security in the Firefox OS and
Tizen Mobile Platforms. IEEE Computer 47(6), 57–63 (2014)

40. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: Automatically De-
tecting Potential Privacy Leaks in Android Applications on a Large Scale. In: Proc.
of TRUST (2012)

41. Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N., Foster, J.S., Mill-
stein, T.: Dr. Android and Mr. Hide: Fine-grained Permissions in Android Appli-
cations. In: Proc. of SPSM (2012)

42. Murphy, M.: Libraries and Dangerous Permissions, https://goo.gl/NJAjMx, ac-
cessed: 25/06/2016

43. Murphy, M.: Runtime Permissions, Files, and ACTION SEND, https://goo.gl/
slhHoI, accessed: 25/06/2016

44. Murphy, M.: You Cannot Hold Non-Existent Permissions, https://goo.gl/

nyDjUj, accessed: 25/06/2016
45. Nauman, M., Khan, S., Zhang, X.: Apex: Extending Android Permission Model

and Enforcement with User-defined Runtime Constraints. In: Proc. of ASIACCS
(2010)

46. Pandita, R., Xiao, X., Wang, W., Enck, W., Xie, T.: WHYPER: Towards Au-
tomating Risk Assessment of Mobile Applications. In: Proc. of USENIX Security
(2013)

47. Singh, K.: Practical Context-Aware Permission Control for Hybrid Mobile Appli-
cations. In: Proc. of RAID (2013)

48. Vidas, T., Christin, N., Cranor, L.F.: Curbing Android Permission Creep. In: Proc.
of W2SP (2011)

49. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission Evolution in the An-
droid Ecosystem. In: Proc. of ACSAC (2012)

50. Wijesekera, P., Baokar, A., Hosseini, A., Egelman, S., Wagner, D., Beznosov, K.:
Android Permissions Remystified: A Field Study on Contextual Integrity. In: Proc.
of USENIX Security (2015)

51. Xing, L., Pan, X., Wang, R., Yuan, K., Wang, X.: Upgrading Your Android, Ele-
vating My Malware: Privilege Escalation Through Mobile OS Updating. In: Proc.
of S&P (2014)

52. Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X.S., Zang, B.:
Vetting Undesirable Behaviors in Android Apps with Permission Use Analysis. In:
Proc. of CCS (2013)

53. Zhauniarovich, Y., Ahmad, M., Gadyatskaya, O., Crispo, B., Massacci, F.: Sta-
DynA: Addressing the Problem of Dynamic Code Updates in the Security Analysis
of Android Applications. In: Proc. of CODASPY (2015)

54. Zhauniarovich, Y., Russello, G., Conti, M., Crispo, B., Fernandes, E.: MOSES:
Supporting and Enforcing Security Profiles on Smartphones. IEEE Transactions
on Dependable and Secure Computing 11(3), 211–223 (May 2014)

55. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution.
In: Proc. of S&P (2012)

21

https://goo.gl/NJAjMx
https://goo.gl/slhHoI
https://goo.gl/slhHoI
https://goo.gl/nyDjUj
https://goo.gl/nyDjUj

	Small Changes, Big Changes: An Updated View on the Android Permission System

