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Abstract

Smartphones provide anytime-anywhere communica-
tions and are being increasingly used for a variety of pur-
poses, e.g, sending email, performing online transactions,
connecting with friends and acquaintances over social net-
works. As a result, a considerable amount of sensitive per-
sonal information is often generated and stored on smart-
phones. Thus, smartphone users may face financial as well
as sentimental consequences if such information fall in the
wrong hands. To address this problem all smartphones
provide some form of user authentication, that is the pro-
cess of verifying the user’s identity. Existing authentication
mechanisms, such as using 4-digit passcodes or graphical
patterns, suffer from multiple limitations - they are neither
highly secure nor easy to input. As a results, recent studies
found that most smartphone’s users do not use any authen-
tication mechanism at all. In this paper, we present a fully
unobtrusive user authentication scheme based on micro-
movements of the user’s hand(s) after the user unlocks her
smartphone. The proposed scheme collects data from mul-
tiple 3-dimensional smartphone sensors in the background
for a specific period of time and profiles a user based on
the collected hand(s) movement patterns. Subsequently, the
system matches the query pattern with the pre-stored pat-
terns to authenticate the smartphone owner. Our system
achieved a True Acceptance Rate (TAR) of 96% at an Equal
Error Rate (EER) of 4%, on a dataset of 31 qualified vol-
unteers (53, in total), using Random Forest (RF) classi-
fier. Our scheme can be used as a primary authentication
mechanism or can be used as a secondary authentication
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Figure 1: Different phone positions during the user interactions
[4].

scheme in conjunction with any of the existing authentica-
tion schemes, e.g., passcodes, to improve their security.

1. Introduction
Smartphones are the most widely used personal devices

[3] and are forecast to replace laptops and desktops1. Be-
sides their traditional use for voice communication, smart-
phones have been used for a variety of other purposes, such
as performing online transactions, social networking, mo-
bile commerce, etc. Consequently, an increasing amount
of privacy sensitive personal information is generated and
stored on smartphones. Hence, it is of paramount impor-
tance to restrict smartphone access only to the legitimate
user.

Most commonly used knowledge-based authentication
mechanisms (i.e., PIN, passwords, etc) are neither highly
secure [20, 2] nor very usable [9]. It is estimated that an

1https://www.wired.com/2015/02/smartphone-only-computer/



average user takes upto 4.7s to unlock her smartphone us-
ing the PIN. Repeating this operation more than an hundred
of times a day can be quite annoying [1]. Biometrics-based
smartphone unlock solutions, e.g., using face, iris, or finger-
print recognition have recently been introduced, however,
they still face unsolved security2 and usability issues [8].
Almost 47% of fingerprint and 36% face recognition users
mentioned low usability as the primary reason for abandon-
ing the use of these technologies [8].

More recently, behavioral-biometrics-based authentica-
tion schemes have attracted significant attention in the do-
main of smartphones. User authentication schemes based
on call placing/answering [7, 5], gait [24], touch opera-
tions [26] and keystrokes [6] analysis have been proposed.
Some advantages of these schemes are: minimal user inter-
action, unobtrusive data collection, no additional hardware
required. An important disadvantage is the obtained accu-
racy. Usually these schemes do not achieve a TAR higher
than 95% with EER from 5 to 10% in controlled and super-
vised testing environments.

This paper presents a novel and fully unobtrusive au-
thentication scheme based on the profiling of the hand(s)
micro-movements when a user unlocks her smartphone (see
Figure 1). Existing user-profiling methods are not com-
pletely unobtrusive since user profiling is done by means
of an additional activity (i.e. typing a sequence on the
touchscreen) added for the sole purpose of user profiling.
Our system, piggyback the profiling in the native unlocking
mechanisms of the phone without requiring any additional
action. Technically speaking, this is done by starting profil-
ing the users after sensing their presence through Android
USER PRESENT broadcast receiver. The USER PRESENT
broadcast receiver is fired at the moment the user either en-
ters her credentials or performs the slide-to-unlock gesture
to unlock her smartphone. The proposed system uses the
unprivileged sensors3 on a smartphone for a short period
of time after an unlock event occurs. Using state-of-the-
art machine learning classifiers, our scheme decides if the
smartphone is unlocked by the owner or by the impostor.
In the case of an impostor, access is denied and the smart-
phone owner is notified. The proposed scheme neither re-
quires any token nor needs the user to remember any spe-
cific gesture/action for unlocking. Thus, it is completely
unobtrusive and usable both as a primary and secondary
smartphone user authentication method. We validated our
method on a realistic setting with unsupervised testers. The
results confirm the effectiveness of the proposed approach.
We report a TAR of 96% at EER of 4%.

The main contributions of the paper are listed below:

• A novel approach for fully unobtrusive user authen-
2http://www.ibtimes.co.uk/iphone-6-touch-id-fingerprint-scanner-

hacked-days-after-launch-1466843
3Unprivileged sensors can be used without any explicit user permission.

tication using the existing smartphone’s sensors and
avoiding any additional hardware.

• Dataset of data collected from multiple sensors by 53
users, in total. Our dataset includes multiple smart-
phones and users tested our system in an uncontrolled
fashion.

• Extensive experimental evaluation to analyse the accu-
racy of the proposed scheme and its feasibility.

2. Related Work
Modern smartphones are equipped with highly sensitive

built-in 3-dimensional sensors such as accelerometer, gyro-
scope, orientation, etc. Researchers have used these sen-
sors to profile users for both static and continuous authen-
tication. In static authentication (one-shot login), users are
recognized based on pre-defined tasks, e.g., walking pat-
terns [16], general phone-movement [13, 28, 21], special
phone-movement (while entering PIN, password) [6], and
lift-behavior (how they move their phone to place or answer
a call [7, 5] and profiled gesture models [28]. The sensory
data collected during these pre-defined tasks are then an-
alyzed to verify the user’s identity. Continuous authentica-
tion schemes typically collect the sensory data continuously
to verify the user’s identity throughout the whole session. In
this section, we review sensory-data-based authentication
schemes for smartphone user authentication proposed over
the years.

Shi et al. [21] present a multi-sensor approach to pas-
sively identify a genuine user. Their system uses accelerom-
eter, touch screen, voice and location data for user authen-
tication. They report ∼ 97% TAR, using the Naive Bayes
classifier, on a dataset of 7 users (three females and four
males). Li et al., [13] explored the utility of three different
sensors: accelerometer, orientation, and compass in addi-
tion to the touch gestures for continuous user authentica-
tion. Their method profiles finger movements using clas-
sical touch-based features and interprets the sensed data
as different gestures. An SVM classifier is than trained
with gestures to perform authentication tasks. Accuracy of
95.78% is reported on a database of 75 users.

Zhu et al. [28] propose a mobile framework model
Sensec based on accelerometer, orientation, gyroscope, and
magnetometer to construct a user gesture profile. The model
then continuously computes the sureness score to authenti-
cate the user. By concatenating X, Y, Z values from the
aforementioned sensors, a valid user is identified with 75%
accuracy and an adversary with an accuracy of 71.3% (with
13.1% FAR) from a set of 20 users. However, the study
requires a user to follow a fixed protocol and collects data
for the entire user interaction session. The method proposed
here is different since it does not require any specific proto-
col to be followed. Furthermore, data is collected only once



in the entire session (without requiring any explicit user in-
teraction).

Conti et al. [7] exploit accelerometer and orientation
sensor readings collected during call placing/answering, to
profile the genuine user. Their study reports a FAR of
4.44% at a FRR of 9.33% on a dataset of 10 users with Dy-
namic Time Warping (DTW) classifier. The study by Buriro
et al. [5] extends it to a tri-modal system which involves arm
movement, finger swiping and voice recognition. 10.28%
FAR at 3.93% FRR is reported on a dataset of 26 users. An
important related work, i.e., HMOG by Sitova et al. [23]
leverages Hand Movement, Orientation, and Grasp to con-
tinuously authenticate smartphone users. It transparently
collects data from the accelerometer, gyroscope, and mag-
netometer when a user grasps, holds and taps on the smart-
phone screen. On a dataset of 100 test subjects (53 males
and 47 females), HMOG achieves lowest EER of 6.92% in
walking state with SVM classifier. Our method does not re-
quire any typing, keystrokes or grasp. Instead the data is
collected transparently after an unlock event occurs (as a
result of either slide-to-unlock, entering PIN or password,
etc.).

Google project - ABACUS, built a large dataset con-
taining 27.62 TB of smartphone signals on Nexus 5 smart-
phones from 1500 users over a period of six months [17].
Data was obtained from multiple sensors, namely, camera,
touchscreen, keyboard, accelerometer, magnetometer, gy-
roscope, light sensor, GPS, Bluetooth, Wi-Fi and applica-
tion usage. Data was recorded for the entire user interaction
session - from one smartphone unlock to the next time it
is locked. Using optimized shift-invariant Dense Convolu-
tional Mechanism (DCWRNN) an EER of 8.82% (per ses-
sion) and 15.84% (per device) was reported. Here an EER
of 8.82% means that 91.18% of the times, the correct user
was holding and moving the phone, not necessarily interact-
ing with it. In our case, we identify user after her interaction
with the device. Upal et. al., [15], collected smartphone
signals from 48 volunteers on Nexus 5 smartphone, over a
period of two months. They collected data from the cam-
era, touchscreen, gyroscope, accelerometer, magnetometer,
light sensor, GPS, Bluetooth, WiFi, proximity sensor, tem-
perature sensor and pressure sensor. Apart from face de-
tection and recognition results, they reported swipe-based
authentication results. Among multiple classifiers, the Ran-
dom Forest classifier achieved lowest EER of 22.1%. How-
ever, both datasets have not been made available to the re-
search community yet so it is difficult to compare to these
solutions.
Most sensor-based authentication solutions listed above uti-
lize the sensor(s) available in smartphones. They collect
sensory data associated with either finger movements, user
tappings or associated with the particular motion (e.g., call
placing). Furthermore, most solutions are based on the data

collected in laboratory settings. On the other hand, our
method is different in the following ways:

• It is fully unobtrusive. It does not require any permis-
sion, participation, or cooperation from a user. Each
authentication step is performed, transparently, in the
background.

• Data was collected in totally uncontrolled manner.

• Our method utilizes all the 3-dimensional sensors
available on the smartphones.

• Our scheme initiates all the sensors after receiving the
user presence notification from the OS associated with
the USER PRESENT broadcast receiver. Therefore, it
can complement the existing one-shot login methods
and becomes more useful, especially, for those users
(e.g., slide-unlock users) who do not want to invoke
any explicit authentication mechanisms on their smart-
phones.

3. Proposed Method
This section presents the threat model, the intuition be-

hind our solution and the overall approach.

3.1. Threat Model

We consider the situation where an attacker is already in
possession of the smartphone. An attacker can be an un-
known person, e.g., traveling with the real user in a bus or
train and getting the smartphone access. Alternatively, an
attacker could be the victim’s friend, family member or a
co-worker attempting to access the smartphone.

3.2. Intuition Assessment

It has been reported in previous studies [6, 4, 23, 7, 17]
that each user holds, interacts and moves her phone in a
unique way. This uniqueness of movement pattern increases
the authentication accuracy on the one side and makes chal-
lenging for impostors to generate exactly the same move-
ment patterns.

3.3. Our Approach

The proposed method is based on the idea of utilizing
a user’s hand micro-movements after she unlocks her
phone using an authentication method, e.g., PIN, slide-
to-unlock, etc. In either case, when the user unlocks her
smartphone, the Android OS generates a specific broadcast
event USER PRESENT. The said event is generated only
once per session (when the user unlocks her smartphone).
Similar events4 are generated also in other mobile oper-
ating systems, e.g., iOS. Thus, the proposed method can

4e.g., PhoneApplicationFrame.Unobscured event in Win-
dows Phone OS, or com.apple.springboard.lockstate event
in Apple iOS.



Figure 2: Flowchart of the proposed method.

be implemented also for other popular mobile operating
systems.
Our idea is based on profiling the user’s hand micro-
movements for a short period of time (at most 10 sec).
The rationale behind choosing this time duration is the
following: (i) it was empirically determined that this time
is sufficient enough for pattern discrimination, and (ii) this
duration is too short for an adversary to debug the device
[25]. The collected data is pre-processed and relevant
features are extracted. A final template is constructed
by concatenating all extracted features and is fed to the
classifier for training or for testing (see Figure 2). If a
user during this period is classified as a genuine user, the
system will not interrupt the owner’s interactions with the
smartphone. On the other hand, if the user is classified
as an impostor, the system alerts the owner of the phone
(e.g., sending an email), and may stealthily isolate the
impostor from accessing sensitive functionality [27, 22],
or ask for explicit authentication [19, 10]. We restrict
ourselves to collecting information from unprivileged
sensors. This allows our system to be implemented as a
separate authentication service or to be integrated within
an implicit authentication framework as the one proposed
in [12]. Figure 2 illustrates our proposed approach for user
authentication on mobile devices. The sensory data is first
pre-processed and the features are extracted. Extracted
features are then concatenated together, to make a feature
vector, and this feature vector is fed into the feature
selection module to find the most productive feature subset
for onward user profiling. The selected feature subset is
stored in the database for matching afterwards with the
query sample to accept or reject the user.

4. Methodology
In this section, we discuss all the steps taken to imple-

ment our solution.

4.1. Data Collection

For the purpose of data collection, we developed an An-
droid application called DataCollector which collects the
data for the analysis. The application is designed to op-
erate in the background (as a separate service), to emulate
the behavior of an authentication application.

In order to collect data for our analysis (supervised learn-
ing task), it was necessary to collect user’s data during their
daily routine of using their smartphone. We set up a web
page which explained the purpose, methodology, and other
related details of the experiment and a download link where
they could get the DataCollector. Moreover, the DataCol-
lector app itself displayed to users all the above-mentioned
details of the experiment. Users could install the application
after agreeing to a consent form.

DataCollector collects data from multiple sensors,
namely, accelerometer, gravity, gyroscope, magnetometer,
and orientation. Additionally, we apply two filters to the
data from accelerometer, i.e., High Pass Filter (HPF) and
Low Pass Filters (LPF)5 with the parameter α = 0.5. Thus,
we used 5 physical sensors and 2 extracted accelerometer
readings (LPF and HPF). For each built-in sensor and sen-
sory readings, we collect 3-dimensional values denoting the
user’s motion in a particular dimension, and additionally
calculate their magnitude (norm).

Our app gathers information from the sensors with the
SENSOR DELAY NORMAL delay. According to the An-

5http://developer.android.com/guide/topics/sensors/sensors motion.html



(a) App Installer (b) WiFi Notifier

Figure 3: Screen shots of our DataCollector app: Figure 3a shows
the application installer and the Figure 3b shows the connectivity
manager.

droid documentation6, for every sensor, data samples are
generated at most every 200, 000 microseconds. Informa-
tion about system events is recorded as soon as they occur.
Every measurement is followed by a timestamp using the
system call System.currentTimeMillis(). There-
after, collected data are packed into the JavaScript Object
Notation (JSON) message and stored as text entries into a
file (one file for every sensor). Every two hours our applica-
tion compresses the collected data to save storage space and
sends the encrypted (to ensure data confidentiality) archives
to our web server. After each successful transmission at-
tempt, the compressed files on the device are deleted, other-
wise, the app keeps retrying.

To ensure participant’s privacy, we did not collect any
information that can be used to identify a user (e.g., IMEI,
IMSI, or phone number). To identify different app in-
stances, DataCollector generates a random unique identi-
fier during the installation. This identifier is later used to
label different users on the server. Moreover, our appli-
cation does not gather any sensitive information, e.g., lo-
cation, user contacts, etc. To facilitate user participation,
DataCollector was developed with the objective to limit the
amount of interactions required to configure the app. User
involvement is required only during the installation, initial
configuration, and for the uninstallation of the app (see Fig-
ure 3). Initial configuration only required users to select if
data must be transmitted only through WiFi or also using
mobile broadband. A total of more than 90GB of raw data
were collected.

4.2. Feature Extraction

We use statistical features calculated over the sensor
measurements gathered within a specified time interval af-
ter the USER PRESENT event. We experimented with time

6http://developer.android.com/guide/topics/sensors/sensors overview.html

No. Features
1 Mean
2 Mean Absolute Deviation (Mad)
3 Median
4 Unbiased Standard Error of Mean (Sem)
5 Standard Deviation (Std)
6 Unbiased skewness (skew)
7 Kurtosis (Kurt)

Table 1: List of extracted features from all four dimensions of each
sensor (28 in total from each sensor).

interval of 2, 4, 6, 8, 10 seconds. From each sensor data,
we extracted 7 statistical values namely, Mean, Mean ab-
solute deviation (Mad), Median (Med), unbiased Standard
Error of the Mean (Sem), Standard Deviation (std), unbi-
ased Skewness (Skew) and kurtosis (Kurt). Thus, for every
sensor there are 28 features listed in Table 1.

We chose time domain features because their calculation
is computationally cheaper compared to the frequency do-
main ones (due to the expensive Fourier transformation).
Moreover, the aim of this paper was to show the feasibility
of the approach, so we started from the simplest possible
approach to provide a baseline for future improvements of
the system.

Normally, extracted features need to be scaled (or nor-
malized depending on the context) before being processed
by machine learning algorithms. However, in our case, we
skipped this transformation for two reasons. Firstly, the
Android system does not provide an Application Program-
ming Interface (API) to find out the minimum and maxi-
mum boundaries of sensor measurements. Hence, the scal-
ing operation will require the authentication application to
analyze a large amount of historical data in order to de-
tect the feature values boundaries. This demands additional
storage space that is limited in mobile environments. More-
over, it is possible that after the training phase, some outliers
may appear in our measurements. Scaled using the learned
boundaries, these values will still hugely outperform them,
thus, influencing a lot the final decision. Secondly, scal-
ing operations require additional computational resources,
which are limited in the case of mobile devices, so our sys-
tem uses raw feature values.

4.3. Feature Subset Selection

Feature, attribute or variable subset selection is the pro-
cess of selecting the most productive feature subset (which
gives maximum accuracy), from the original feature set.
Feature selection is performed mainly for three reasons:
firstly, to identify redundant and irrelevant features from the
original feature vectors (features below the red line in the
Figure 4), secondly, to decrease the computational cost, i.e.,
processing smaller feature vectors is computationally inex-
pensive as compared to processing original feature vectors.
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Figure 4: Feature Selection for different time periods, i.e.,
4000ms, and 6000ms. Due to space limitations, we show these
figures for 2 time durations.

2000ms 4000ms 6000ms 8000ms 10000ms
Classifiers TAR EER TAR EER TAR EER TAR EER TAR EER

BN 0.89 0.11 0.89 0.11 0.89 0.11 0.88 0.12 0.89 0.12
MLP 0.93 0.07 0.93 0.07 0.94 0.06 0.94 0.06 0.94 0.06
1NN 0.88 0.12 0.88 0.12 0.89 0.11 0.89 0.11 0.90 0.10
RF 0.95 0.05 0.95 0.05 0.95 0.05 0.95 0.05 0.95 0.05

Table 2: Results of different classifiers for different lengths of data
acquisition (averaged over all 31 qualified users) with full features.

Finally, smaller feature vector reduces the complexity of the
model and hence results in faster classifier learning.

To select the best subset, that is the subset which yields
maximum accuracy, out of all 196 available features, we
relied on InfoGainAttributeEval7 - a WEKA implementa-
tion for Information Gain (IG) based feature selection. It
evaluates the worth of a feature by computing the infor-
mation gain of that feature with respect to the class. We
straight away excluded all the non-contributing features,
i.e., having zero value (see Figure 4). In addition, to avoid
any chances of overfitting, we picked 50 top-gain features
(marked above the red line), making them equivalent to the
number of samples, for further analysis.

5. Validation

Our experimental validation involves the collection of
labeled raw data from multiple 3-dimensional smartphone
sensors and then transforming them into the patterns. A pat-
tern here is the horizontal concatenation of all the features
of all the sensors (196 before feature subset selection), as
discussed in section 4.2. The resulting 50 patterns for each
of the 31 users are 196 feature long. Note that we take into
account only users with ≥ 50 patterns.

7http://weka.sourceforge.net/doc.dev/weka/attributeSelection/
InfoGainAttributeEval.html.
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Figure 5: Results of MLP and RF verifiers (averaged over all 31
qualified users) on selected features set.

5.1. Classification Methods

The choice of the classifier depends on various parame-
ters such as the size of the dataset, training time, simplic-
ity, computational constraints, etc. It is usually impossi-
ble to know in advance which classifier fits a dataset bet-
ter. We used four classification algorithms from the WEKA
workbench [11] for user authentication: BayesNET (BN),
K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP)
and Random Forest (RF). BN and KNN were chosen for
their simplicity, fast learning phase and robustness. MLP
classifier belongs to the neural network family and was
found extremely accurate in related studies. The RF clas-
sifier is yet another classifier shown to be very accurate
in the previous study [6]. Additionally, RF classifier does
not overfit and is extremely quick even if it consumes more
memory than a single decision tree.

Since we have limited number of user patterns (50 only),
our analysis is based on 10-fold cross-validation for all ex-
periments with 10 runs. The setting looks justified because
in this way, each available sample is tested and their average
is reported.

5.2. Results

We present the results in terms of TAR and EER. TAR is
the fraction of legitimate user attempts correctly classified.
EER is the rate at which both false acceptances and false
rejections becomes equal.

The results of all of our chosen classifier before the fea-
ture selection are shown in the Table 2. We can see that RF
and MLP classifier performed best with default parameters
(100 trees for RF and 1 hidden layer for MLP) yielding up
to 95% and 94%, TAR, respectively. Thus, we take these
two classifiers for further analysis. The Figure 5 shows the
outcome of both MLP and RF classifiers on the subset of se-
lected features. MLP classifier performed best on 10s data
yielding 95%, however, RF classifier proved itself consis-
tent on all the available lengths of the dataset.

We evaluated further the different feature lengths in or-
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Figure 6: Results in terms of EER for different feature lengths
(from selected features).

der to (i) cross check our earlier obtained results, and (ii)
observe if the same accuracy can be obtained with even less
features (see Figure 6). The best EER of 5% is obtained
for 8s and 10s durations with MLP classifier, however, RF
classifier is found consistent with all the durations yield-
ing 4% EER except the 8s time interval. It is also worth-
mentioning that for 6s time duration, we obtained 4% EER
with just 40 features. Of course, lower time intervals has to
be preferred to long ones, if accuracy is the same because
they are faster and reduce battery consumption. So the best
option to choose is the interval of 6s with just 40 features.

6. Discussion and Future Work

Our participants reported a higher power consumption
of about 5 − 12% measured using the Android’s internal
power reporter, due to use of the DataCollector app. How-
ever, the end system will consume less power because it
will collect the sensory readings for smaller time periods,
i.e., 6 sec, while DataCollector gathers sensor readings all
the time when the screen is on, which is on average equal to
70.3sec [9]. Moreover, we expect in the near future that all

mobile platforms will be equipped with low-power contin-
uous sensing modules [18], that will further reduce power
consumption. The final implementation and its complete
evaluation is a subject of future work.

We assume that during the experiment a smartphone was
used solely by the owner. However, in general case this is
not true, e.g., sometimes a smartphone may be used by a
family member, a friend, etc. We did not apply any out-
lier detection approach to filter out and delete such outliers.
Such filtering should in principle lead to better results.

Our model does not consider the impact of situations
while authenticating. As some papers show [5], situations
(i.e., walking, standing, running, etc.) may affect the be-
havioural pattern. If the phone is unlocked while walking
the resulting pattern would be different if the same user un-
locks the phone while lying on a bed. On a positive side,
we tested the system in an uncontrolled fashion so the users
were not constrained to a specific situation and data were
gathered in a realistic fashion mixing different situations.
Neverthesless might be interesting to check the impact of
each situation on the aggregate results.

As future work, we will extend the DataCollector app
to recognize situations (e.g., by using JigSaw engine [14],
etc.) and select the most appropriate set of features for that
situation.

We plan also to extend the experimental validation with
a higher number of testers.

7. Conclusion

This paper presents a novel approach for unobtrusive
user authentication on smartphone. Our method is based on
profiling hand(s) micro-movements, after an unlock event
occurs, using smartphone built-in unprivileged sensors. The
design allow to implement our method as a device un-
locking method and/or as a separate authentication service,
which may be used by different applications (i.e., mobile
banking, m-health app, etc.).

We have shown that by profiling the user based on sim-
ple time-domain features, extracted from sensory data, we
can authenticate the smartphone users. To validate our ap-
proach, we launched an uncontrolled experiment with 31
qualified users (53, in total). We collected real-world read-
ings from commonly available smartphone sensors (5 phys-
ical and 2 extracted sensory readings, i.e., LPF and HPF)
and share this dataset with the research community. Using
the obtained data, we inferred critical parameters for our
system, e.g., the data collection time interval. We also used
the dataset to assess our system. The experiments showed
that our prototype achieves the TAR of 96% at an EER of
4% in the authentication task.
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