
Olga Gadyatskaya
SnT, University of Luxembourg

olga.gadyatskaya@uni.lu

Stanislav Dashevskyi
SnT, University of Luxembourg

stanislav.dashevskyi@uni.lu

Aleksandr Pilgun
SnT, University of Luxembourg

aleksandr.pilgun@uni.lu

Yury Zhauniarovich
Qatar Computing Research Institute, HBKU

yzhauniarovich@hbku.edu.qa

An Effective Android Code Coverage Tool
Artsiom Kushniarou

SnT, University of Luxembourg
artsiom.kushniarou@uni.lu

Context

The deluge of Android apps from third-party developers
calls for sophisticated security testing and analysis
techniques to inspect suspicious apps without accessing
their source code. Code coverage is an important metric
used in these techniques to evaluate their effectiveness,
and even as a fitness function to help achieving better
results in evolutionary and fuzzy approaches.

Existing tools [1-4] for measuring code coverage over
the bytecode of Android apps have the following
limitations:
─ coarse granularity
─ low instrumentation success rate
─ limited empirical evaluation

Approach

ACVTool allows to measure and analyze the degree to which the code of a
closed-source Android app is executed during testing, and to collect crash
reports occurred during this process. The tool instruments an app and
measures code coverage at instruction, method and class granularities.

ACVTool produces detailed coverage reports that are convenient for either
visual inspections (html), or automatic processing (xml). Our tool also collects
crash reports that facilitate the analysis of faults within apps.

Conclusions

Smali Report

• We offer to Android security testing community a novel tool for 
black-box code coverage measurement of Android applications.

• We have significantly improved the smali instrumentation 
technique and consequently our instrumentation success rate is 
96.9%, compared with 36% in Huang et al. [2] and 65% in 
Zhauniarovich et al. [4]. 

• ACVTool is an open source tool currently available at 
https://github.com/pilgun/acvtool.

Evaluation

We have extensively tested ACVTool on real-life third party
applications. The sample consists of 448 runnable applications
from F-Droid and 398 randomly selected Google Play applications
targeted to the Android API 22+.

Conclusion: total ACVTool success rate is 96.9% with average
instrumentation time 36 seconds on our dataset.

[1] ELLA. 2016. A Tool for Binary Instrumentation of Android Apps, https://github. com/saswatanand/ella.
[2] C. Huang, C. Chiu, C. Lin, and H. Tzeng. 2015. Code Coverage Measurement for Android Dynamic Analysis Tools. In 
Proc. of Mobile Services (MS). IEEE, 209–216.
[3] J. Liu, T. Wu, X. Deng, J. Yan, and J. Zhang. 2017. InsDal: A safe and extensible instrumentation tool on Dalvik byte-
code for Android applications. In Proc. of SANER. IEEE, 502–506.
[4] Y. Zhauniarovich, A. Philippov, O. Gadyatskaya, B. Crispo, and F. Massacci. 2015. Towards black box testing of 
Android apps. In Proc. of SAW at ARES. IEEE, 501–510.

References

ACVTool code coverage report example

Design

https://github.com/pilgun/acvtool

mailto:olga.gadyatskaya@uni.lu
mailto:olga.gadyatskaya@uni.lu
mailto:olga.gadyatskaya@uni.lu
mailto:yzhauniarovich@hbku.edu.qa
mailto:olga.gadyatskaya@uni.lu

