
POSTER: The Influence of Code Coverage Metrics on
Automated Testing Efficiency in Android

Stanislav Dashevskyi
SnT, University of Luxembourg

stanislav.dashevskyi@uni.lu

Olga Gadyatskaya
SnT, University of Luxembourg

olga.gadyatskaya@uni.lu

Aleksandr Pilgun
SnT, University of Luxembourg

aleksandr.pilgun@uni.lu

Yury Zhauniarovich
Qatar Computing Research Institute, HBKU

yzhauniarovich@hbku.edu.qa

ABSTRACT
Code coverage is an important metric that is used by auto-
mated Android testing and security analysis tools to guide
the exploration of applications and to assess efficacy. Yet,
there are many different variants of this metric and there is
no agreement within the Android community on which are
the best to work with. In this paper, we report on our prelim-
inary study using the state-of-the-art automated test design
tool Sapienz. Our results suggest a viable hypothesis that
combining different granularities of code coverage metrics can
be beneficial for achieving better results in automated testing
of Android applications.
ACM Reference Format:
Stanislav Dashevskyi, Olga Gadyatskaya, Aleksandr Pilgun, and Yury
Zhauniarovich. 2018. POSTER: The Influence of Code Coverage
Metrics on Automated Testing Efficiency in Android. In 2018
ACM SIGSAC Conference on Computer and Communications
Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3243734.3278524

1 INTRODUCTION
Today Android enjoys immense popularity, with 3 millions
of third party applications (apps for short) available in the
official Google Play market as of 2018. While the end-users
may be thrilled by this plethora of apps, they can start
looking for alternative platforms if Google Play hosts too
many faulty or even malicious apps. Not surprisingly, Google
is interested in performing additional testing of submitted
apps before they appear for the wide public [4]. However,
the developers only supply compiled packages, while original
source code of apps is unavailable for inspection. At the
same time, given the amount of submitted apps, no market,
even Google Play, possesses enough resources to perform
exhaustive manual testing. Thus, frameworks for automated
black-box app testing have become indispensable.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5693-0/18/10.
https://doi.org/10.1145/3243734.3278524

Automated testing and analysis tools for Android apps
are typically designed to make the process more effective by
finding more bugs or security issues; more comprehensive by
achieving better code coverage; and faster by generating the
smallest possible input sequences [2]. To achieve these goals,
tools employ different approaches: from randomly generat-
ing sequences of input events to systematically exploring a
model of the app under the test [2]. The algorithms used by
these tools often rely upon a fitness function that promotes
the selection of inputs that have the best performance with
respect to a certain set of criteria.

For instance, a state-of-the-art search-based testing tool
called Sapienz [7] recently acquired by Facebook uses a Pareto-
optimal fitness function that depends on measuring code
coverage. Sapienz employs three code coverage metrics that
can be used interchangeably: activity coverage that is specific
to Android apps, method, and statement coverage. However,
there is no indication if either of these metrics is preferable.
One may work with all of them, but this triples the time
required for testing, already measured in hours per app. It is
therefore desirable to understand whether there is an effect
of different levels of granularity of code coverage metrics on
the quality of automated testing, or if there is one coverage
granularity that should be used.

In this paper, we make the first step in this direction. In
particular, we hypothesize that there is an effect of consider-
ing different code coverage granularities on the effectiveness
of automated test design tools, and report on experiments
with Sapienz investigating the viability of this hypothesis.

2 BACKGROUND
Android apps are distributed in the form of Android package
files (apk). These files are archives that, besides different
resource files, contain bytecode executed by the Dalvik/ART
Android virtual machine. Typically, automated black-box
testing tools for Android work directly with these apk files.
There exist many tools for functional testing and finding
bugs [2, 6, 7] and for security-related testing and dynamic
analysis, e.g., [1, 11]. The critical issue that all these tools
have to address is efficient exploration of apps, i.e., triggering
of GUI or system events that engage apps under the test [2].
Triggering is difficult for Android apps that have many differ-
ent points of entry and are oriented towards interaction with
the Android platform and the user. Lacking the knowledge

https://doi.org/10.1145/3243734.3278524
https://doi.org/10.1145/3243734.3278524
https://doi.org/10.1145/3243734.3278524

Table 1: Crashes found by Sapienz in 500 apps

Coverage metric # unique
crashes

faulty
apps

crash
types

Activity 287 203 23
Method 317 231 23

Instruction 322 225 23
Total 555 295 26

on how apps are supposed to behave, testing tools need to
automatically uncover their execution paths. In this respect,
code coverage becomes an essential metric that estimates how
well an app has been exercised [2]. Moreover, several state-
of-the-art automated triggering and testing tools use code
coverage to guide the exploration strategy of apps, e.g., [5–7].

The importance of code coverage metrics for automated
testing and dynamic analysis of Android apps is immediately
evident from the aforementioned related work. Yet, we could
not find in the literature any discussion on which specific
code coverage metrics (or granularity levels) work best for
Android. Therefore, the aim of our study is to fill this gap.

3 OUR STUDY
To investigate whether different levels of granularity of code
coverage metric have an effect on the results of automated
test design tools, we work with Sapienz [7]. It first generates
a set of random “seed” test sequences, and then mutates
them trying to improve a Pareto-optimal fitness function
that depends on three criteria: code coverage, the length of
a test sequence, and the number of app crashes that the test
sequence has uncovered.

Sapienz can use three code coverage granularities. State-
ment coverage is measured by EMMA [9], a popular but
outdated tool that works only for apps with source code avail-
able. Method coverage is measured by ELLA [3], another
popular but no longer supported tool that often fails with
more recent Android apps. In our experiments, we replaced
EMMA and ELLA with ACVTool that measures bytecode
instruction and method coverage [8]. Finally, activity cov-
erage is measured by a plugin in Sapienz. Note that the
code coverage measurement itself does not interfere with the
search algorithms used by Sapienz.

As our dataset, we have randomly selected 500 apps from
the Google Play market, and ran Sapienz against each of these
apps, using its default parameters. Each app has been tested
using the activity coverage provided by Sapienz, and the
method and instruction coverage supplied by ACVTool [8].
On average, each app has been tested by Sapienz for 3 hours
(for each coverage metric). After each run, we collected the
crash information (if any), which included the components
of apps that crashed and Java exception stack traces.

3.1 Descriptive statistics of crashes
Table 1 shows the numbers of crashes grouped by coverage
metric that Sapienz has found in the 500 apps. We consider
unique crashes as unique combinations of an application, its

136
8721

76

15
105

115

Activity Method

Instruction

Figure 1: Crashes found by Sapienz in 500 apps

component where crash occurs and the line of code that
triggered an exception, and a specific Java exception type.

In total, Sapienz has found 295 apps out of 500 to be
faulty (at least one crash detected), and it has logged 555
unique crashes with all three coverage metrics. Figure 1
summarizes the crash distribution for the coverage metrics
that found it. As we can see, the intersection of all code
coverage metrics’ results contains 115 unique crashes (20%
of total found crashes). Individual coverage metrics have
found 58% (instruction coverage), 57% (method coverage),
and 51% (activity coverage) of the total found crashes. These
findings suggest that different code coverage metrics are
complementary and could be applied together in order to
achieve the best testing results.

3.2 Evaluating behavior on multiple runs
Like many other automated testing tools for Android, Sapienz
is non-deterministic, and our findings may be affected by this.
To determine the impact of coverage metrics in finding crashes
on average, we need to investigate how crash detection be-
haves in multiple runs. Thus, we have performed the following
two experiments on a randomly selected set of 100 apks.

Performance in 5 runs. We have run Sapienz for 5 times
with each coverage metrics for each of 100 apps. This gives
us two crash populations: 𝒫1 that contains crashes detected
in the 100 apps during the first experiment, and 𝒫5 that
contains crashes detected in the same apps running Sapienz 5
times. Table 2 summarizes the populations of crashes found
by Sapienz with each of the coverage metrics.

As expected, running Sapienz multiple times increases the
amount of found crashes. In this experiment, we are interested
in the proportion of crashes contributed by coverage metrics
individually. If coverage metrics are interchangeable (they
do not differ in capabilities of finding crashes, and they will,
eventually, find the same crashes), the proportion of crashes
found by individual metrics to the total crashes population
can be expected to significantly increase: each metric, given
more attempts, will find a larger proportion of the total
crash population. However, as shown in Table 2, only the
activity coverage has found a significantly larger proportion
of total crash population (59% from 45%). The instruction
coverage has slightly increased performance (59% from 54%),
while the method coverage has fared worse (55% from 62%).
These findings suggest that the coverage metrics are not

Table 2: Crashes found in 100 apps with 1 and 5 runs

Coverage metrics Crashes
𝒫1: 1 run 𝒫5: 5 runs

Activity coverage 54 (45%) 115 (58%)
Method coverage 72 (62%) 108 (55%)

Instruction coverage 65 (55%) 116 (59%)
Total 118 196

interchangeable, and even with 5 repetitions they are not
able to find all crashes that were detected by other metrics.

Wilcoxon test. We now fix the time that Sapienz spends
on each apk, and we want to establish whether the amount
of crashes that Sapienz can find in an apk with 3 metrics is
greater than the amount of crashes found with just one metric
but with 3 attempts. This will suggest that the combination
of 3 metrics is more effective in finding crashes than each
individual metric. For each apk from the chosen 100 apps,
we have computed the number of crashes detected per app
with each three coverage metrics executed once. We then
have executed Sapienz 3 times against each apk with each
coverage metrics individually.

Table 3 summarizes the basic statistics for the apk crash
numbers data. We see that Sapienz equipped with 3 coverage
metrics has, on average, found more crashes in an apk than
Sapienz equipped with only one metric but executed 3 times.
To verify this, we applied Wilcoxon signed rank test [10], as
our data is paired but not necessarily normally distributed.
Assume that there is no difference which metric to use in
Sapienz. Then, on average, Sapienz with 3 metrics will find
the same amount of crashes in an app as Sapienz with 1 metric
but run 3 times. This is the null-hypothesis for Wilcoxon test.
Alternative hypothesis is that one version of Sapienz will
consistently find more crashes. The results of Wilcoxon test
rejected null-hypothesis (p-values equal 0.008, 0.0005, 0.007
for activity, method and instruction coverage, respectively,
which is less than 0.05). We can conclude that Sapienz using
3 metrics finds, on average, more crashes than Sapienz with
only 1 metric run 3 times. Cohen’s 𝑑 for effect size are equal,
respectively, 0.263, 0.347 and 0.269.

3.3 Discussion
Our results show that all three code coverage granularities
are complementary for finding bugs with automated testing
tools such as Sapienz. However, running Sapienz with all 3
metrics can be too time-consuming. Thus, it may be rational
to prioritize coverage metrics that yield better results. At this
point, it is not yet clear which coverage metric works best,
and whether there are other confounding factors. Figure 1
might indicate that instruction and method coverage tend to
identify similar crashes, while activity coverage finds some-
what different faults. We are now running a larger experiment
to investigate this further.

Our preliminary study has several limitations. First, our
experiments involved a relatively small sample of Android
apps. It is possible that on a larger dataset we will obtain

Table 3: Summary statistics for crashes found per apk

Statistics 1 run × 3 metrics 3 runs × 1 metric
activity method instruction

Min 0 0 0 0
Mean 1.18 0.95 0.85 0.95

Median 1 0 0 1
Max 8 8 5 6

different results. Second, we acknowledge that our tools mea-
suring code coverage at the method and instruction levels
may introduce some additional bugs during the instrumenta-
tion process. We have manually inspected several randomly
selected crashes to confirm that they do appear in the orig-
inal apk as well, and we have not found any discrepancies
between the original and instrumented apk behaviours, but
a larger experiment is required to eliminate this threat to
validity. Moreover, other testing tools that rely upon code
coverage might not obtain better results when combining
several metrics at different levels of granularity. We plan to
investigate this further by including more automated testing
tools in experiments.

4 CONCLUSION
In this paper, we reported on the first step towards a better
understanding of the usefulness of different code coverage
granularities for automated test generation. Our experiment
shows that the joint usage of several granularities of code
coverage metric leads to discovering more bugs.

Acknowledgements
This research was partially supported by Luxembourg Na-
tional Research Fund through grants C15/IS/10404933/COMMA
and AFR-PhD-11289380-DroidMod.

REFERENCES
[1] P. Carter, C. Mulliner, M. Lindorfer, W. Robertson, and E. Kirda.

2016. CuriousDroid: Automated user interface interaction for
Android application analysis sandboxes. In Proc. of FC.

[2] S. R. Choudhary, A. Gorla, and A. Orso. 2015. Automated test
input generation for Android: Are we there yet?. In Proc. of
ASE.

[3] ELLA. 2016. A Tool for Binary Instrumentation of Android Apps,
https://github.com/saswatanand/ella.

[4] Google. 2018. https://support.google.com/googleplay/
android-developer/answer/7002270.

[5] T. Gu, C. Cao, T. Liu, C. Sun, J. Deng, X. Ma, and J. Lü. 2017.
AimDroid: Activity-Insulated Multi-level Automated Testing for
Android Applications. In Proc. of ICSME.

[6] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi,
and Y. Donmez. 2018. QBE: QLearning-based exploration of
Android applications. In Proc. of ICST.

[7] K. Mao, M. Harman, and Y. Jia. 2016. Sapienz: Multi-objective
automated testing for Android applications. In Proc. of ISSTA.

[8] A. Pilgun, O. Gadyatskaya, S. Dashevskyi, Y. Zhauniarovich,
and A. Kushniarou. 2018. DEMO: An Effective Android Code
Coverage Tool. In Proc. of CCS.

[9] V. Rubtsov. 2006. EMMA: Java Code Coverage Tool, http://
emma.sourceforge.net/.

[10] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén. 2012. Experimentation in software engineering.
Springer.

[11] M. Y Wong and D. Lie. 2016. IntelliDroid: A Targeted Input
Generator for the Dynamic Analysis of Android Malware. In Proc.
of NDSS.

https://github.com/saswatanand/ella
https://support.google.com/googleplay/android-developer/answer/7002270
https://support.google.com/googleplay/android-developer/answer/7002270
http://emma.sourceforge.net/
http://emma.sourceforge.net/

	Abstract
	1 Introduction
	2 Background
	3 Our Study
	3.1 Descriptive statistics of crashes
	3.2 Evaluating behavior on multiple runs
	3.3 Discussion

	4 Conclusion
	References

