
Sorting the Garbage: Filtering Out DRDoS
Amplification Traffic in ISP Networks

Yury Zhauniarovich
Perfect Equanimity

Minsk, Belarus
yury@perfectequanimity.com

Priyanka Dodia
Qatar Computing Research Institute, HBKU

Doha, Qatar
pgdodia@hbku.edu.qa

Abstract—Distributed Reflected Denial of Service (DRDoS)
attacks have been continuing to grow unprecedentedly in the
recent years. Attackers abuse genuine services running some
application protocols built over UDP to generate amplified traffic
targeting victim network. An Internet Service Provider (ISP)
may host hundreds or even thousands of hosts running these
vulnerable protocols that could become amplifier nodes in DRDoS
attacks. If abused, they can collectively cause large volumes of
garbage amplification traffic flowing out of the ISP network. This
wasteful bandwidth consumption costs the provider money and
loss of Quality of Service (QoS) to its customers. Moreover, the
owners of services vulnerable to amplification have to spend their
resources to process illicit requests.

In this paper, we propose a novel idea to filter out garbage
traffic from an ISP network. We employ a special type of a
honeypot that collects information about ongoing DRDoS attacks,
and Software Defined Network (SDN) paradigm offering us a
unified interface to deploy firewall rules on a large variety of
network devices. The rules block incoming amplification requests
from reaching amplifiers located within the provider network
rescuing vulnerable services from being abused. This prevents
garbage traffic from leaving the network enabling the provider
to save money and improve QoS. Moreover, our solution also
contributes to victim’s liveliness because it reduces the attack
traffic reaching the target network. In addition, it stimulates ISPs
to implement ingress filtering best practices for all its network
routers in order to minimize damage from an attacker located
in the same network.

Index Terms—amplification attacks, garbage traffic filtering,
honeypot, ISP networks

I. INTRODUCTION

During the last several years, we observe an unprecedented
growth of the number and the size of DRDoS attacks. In such
attacks, crafted requests are sent to genuine machines, called
amplifiers, which return amplified responses to a spoofed IP
address of a victim, completely exhausting victim’s bandwidth.
These responses can be hundreds or even thousands [1] times
larger in size than the corresponding originating requests.
For instance, Github, a well-known platform for software
development, has withstood such an attack experiencing whop-
ping bandwidth of 1.35 Tb/sec [2]. Due to the low resource
requirements from an attacker and a possibility to stay stealthy,
these attacks have quickly gained popularity.

Y. Zhauniarovich was with Qatar Computing Research Institute, HBKU.

Amplification attacks are possible due to four factors: (1)
there is no possibility for a genuine machine to check if a
request comes from an original IP address (no sender verifica-
tion); (2) some protocols return a response considerably larger
in size than the corresponding request (amplification); (3)
there are many amplifiers in the Internet; and (4) traffic with
spoofed IP addresses is allowed to pass network perimeters.
A number of initiatives have been proposed to eliminate or
reduce the influence of these factors. First, some vulnerable
protocols have been patched either to remove or to reduce the
amplification factor [3]. Second, a number of services around
the world have been launched to reveal vulnerable hosts
and educate people how to fix the issue [4]. Third, tools to
shutdown or reduce the power of an attack by sending special
commands to vulnerable hosts have been also proposed [5].

However, the most effective way of dealing with DRDoS
attacks is to prevent packets with forged source IP addresses to
pass through networks. This goal can be achieved if routing en-
tities apply filtering of ingress traffic, allowing only the packets
with valid source IP addresses to pass. Such recommendations
have been provided in RFC 2827 [6] better known as IETF’s
Best Current Practice document 38 (BCP 38). However, 18
years after this document appeared they are not yet applied
everywhere [7] because ISPs do not directly benefit from their
implementation. These recommendations require an ISP to
spend its resources on the recommendation implementation
and traffic filtering, while they do not protect itself from
forged traffic coming from external networks. Not surprisingly,
DRDoS attacks are still a real threat to the Internet.

ISPs suffer a lot from this unwanted traffic. First, it exhausts
ISPs’ and their customers’ bandwidth affecting QoS. Nowa-
days, ISPs in some countries, e.g., in the UK [8], must report to
their customers minimum guaranteed speed, and if they fail to
deliver it the users have the right to break the contract without
any penalty. Huge amounts of garbage DRDoS traffic may
indirectly cause such an outcome. Second, ISPs are usually
entitled to pay for the traffic, especially, if it is asymmetric [9].
That is why, they are not happy with the services entitled for its
generation, like Netflix and YouTube, so that they want to take
down or violate the net neutrality principle [10]. Clearly, the
traffic generated by amplifiers hosted within the perimeter of
an ISP network may reach substantial amounts. For instance,
based on our experiments only a single host vulnerable to978-1-5386-9376-6/19/$31.00 ©2019 IEEE

NTP amplification could generate more than 2 TB of garbage
traffic a day. An ISP network may host hundreds or even
thousands of such amplifiers that if abused, could potentially
waste significant amount of ISP’s resources and money.

In this paper, we propose a novel idea of filtering out such
spoofed traffic at the edge of an ISP network. This prevents
garbage traffic being generated by amplifiers located within
the network, saving ISP’s resources. Unlike the majority of
the existing DRDoS mitigating solutions [11]–[13] that are
focused on protecting victim’s network, we aim at shielding
amplifiers from unwanted traffic. Contrary to BCP 38 [6],
ISPs directly benefit from our solution because it saves their
money and improves QoS for their customers. Moreover, it
aids other Internet citizens indirectly. First, our method permits
to save resources of ISP customers hosting services vulnerable
to amplification. Second, our solution helps to reduce or
completely eliminate (if deployed world-wide) attack traffic
to victims. Third, it encourages an ISP to implement BCP 38.

Our approach relies on an amplification honeypot, e.g.,
AmpPot [14], that provides information about an ongoing
attack. By default, an amplification honeypot is not used
by benign clients because it does not advertise its services.
Therefore, only malicious users, who have previously scanned
the network and discovered this vulnerable host, employ it for
an attack. Benignly participating in an attack, the honeypot
collects the information, namely victim IP address and what
service is abused, that allows us to block spoofed traffic
entering ISP’s network. As a result, it will not reach other
vulnerable hosts in the network and will not be amplified.

To filter out spoofed traffic, in this work we employ Soft-
ware Defined Networking (SDN) paradigm. In particular, we
developed an SDN Firewall application that, having informa-
tion from the honeypot, automatically deploys firewall rules
on edge switches that drop spoofed traffic. SDN provides us
a generic interface to interact with network devices making
our solution vendor-agnostic. It is also possible to use other
interfaces to contact with network devices, e.g., Interface to
Network Security Functions (I2NSF) [15]. Other technologies
could be used with our approach to block amplification traffic
as well. For instance, we can make use of software or hardware
firewalls given an interface to interact with this devices.
Similarly, it is also possible to use Border Gateway Protocol
(BGP) Flow Specification Rules [16] to drop unwanted traffic.
Although in the current work, we concentrate on attack traffic
dropping, we can apply other traffic shaping actions, e.g., rate
limit or redirect it for additional examination.

It should be noted that not all providers are created
equal [17]. Tier-1 ISP has access to the global Internet and
does not buy traffic from other ISPs, operating only through
peering agreements [17]. Tier-2 providers connect Tier-1 with
Tier-3 ISPs. They usually buy the traffic from Tier-1 providers,
but could also have direct peering agreements. Tier-3 are the
last-mile ISPs providing connection to end users. In this work,
we target Tier-2 and Tier-3 ISPs, because they are usually
entitled to pay for the traffic. Moreover, these are the providers
hosting services vulnerable for amplification.

ISP Network

Attacker
IP: 198.51.100.1

1

a Victim
IP: 203.0.113.4

HONEYPOT
IP: 192.0.2.1

PORT: 53
3

IV

2

4

6

b
III

IP: 192.0.2.3
PORT: 53

DNS

SDN
Controller

DRDoS
Firewall App 5

I II

Fig. 1. System Overview

II. SYSTEM OVERVIEW

Figure 1 gives a high-level overview of our system. There
are four main components (marked with Roman numerals):
(I) SDN Controller; (II) DRDoS Firewall Application; (III)
SDN Forwarding Device; (IV) Amplification Honeypot. All
incoming traffic to the ISP network passes through SDN For-
warding Device. This edge device plays the role of a firewall
filtering out the traffic that matches defined flow rules. These
rules are generated by DRDoS Firewall Application based on
the data provided by Amplification Honeypot. DRDoS Firewall
Application uses the functionality provided by SDN Controller
to deploy the rules on SDN Forwarding Device. While cur-
rently we employ an ad-hoc interface between Amplification
Honeypot and DRDoS Firewall Application, generally it is
possible to rely on Distributed-Denial-of-Service Open Threat
Signaling (DOTS) architecture [18].

In order to launch an attack, at first an adversary searches
hosts vulnerable for amplification. Let’s assume that dur-
ing this scan s/he has discovered two hosts in ISP’s net-
work vulnerable for DNS amplification: an open resolver (IP
192.0.2.3) and our honeypot (IP 192.0.2.1). During
the attack, the adversary sends requests with a spoofed victim
IP address to these two hosts (Steps 1 and 2, green arrows)
targeting a vulnerable protocol on a predefined UDP port (e.g.,
port 53 for DNS). At Step 3, the vulnerable server and the
honeypot generate amplified replies in response to the received
requests. However, the latter also starts monitoring the attack,
and if its volume exceeds a predefined threshold (the amount
of the requests received in a period of time for a combination
of source IP address and destination UDP port) it sends an
alert to DRDoS Firewall Application (Step 4). This application
through the SDN Controller (Step 5) issues an OpenFlow
firewall rule to the edge SDN Forwarding Device (Step 6)
that blocks all incoming packets with the source IP address
and the destination port matching to the victim IP address
and DNS port correspondingly. Hence, all consecutive requests
from the attacker (Step a, blue arrow) will be blocked by the
edge device and will not reach the vulnerable servers (Step b).

At the beginning of the operation, a rule on SDN Forward-
ing Device is set that allows the traffic coming to Amplification
Honeypot to pass (this rule has higher priority than the ones

Honeypot
DRDoS

Firewall App +
SDN Controller

SDN Forwarding
Device

Add Rule
Time Window

Add Rule
Threshold

1. Attack Start Alert
add_rule(flow_pattern) 2. OpenFlow flow_mod

command: ADD
match: flow_pattern
actions: dropDrop Rule

Time Window

3. Attack End Alert
drop_rule(flow_pattern) 4. OpenFlow flow_mod

command: DELETE
match: flow_pattern

Drop Rule
Threshold

Fig. 2. System Workflow

issued by DRDoS Firewall Application). Such whitelisting
enables the honeypot to continue monitoring the attack. Once
the attack is over (no amplification requests are received
within specified period of time), the honeypot notifies DRDoS
Firewall Application to drop the corresponding firewall rule.

A. Work Flow

Figure 2 explains the workflow of our system. The honeypot
monitors all incoming packets sent by attackers (represented
with red arrows), be them scans or attack requests. This gives
the honeypot real-time visibility on ongoing amplification
attacks. Packets are split into flows according to a key, e.g.,
by source IP address-destination port. We use these fields
because in order to attack a specific victim using a particular
vulnerable service, it is required to provide real victim’s source
address and destination port of the vulnerable service.

In our case, every flow corresponds either to an attack
or scan set of packets. Each unique flow is assigned with
a counter that counts the amount of packets arrived within
a predefined time interval (Add Rule Time Window). If the
number of packets exceeds a threshold (Add Rule Threshold),
meaning that incoming packets belong to an attack rather than
to a scan, the honeypot generates an Attack Start Alert. It is
sent to DRDoS Firewall Application together with the metai-
nformation about the flow flow_pattern. DRDoS Fire-
wall Application using SDN Controller issues an OpenFlow
flow_mod instruction to SDN Forwarding Device, requesting
to add a new rule (command ADD) to drop packets (actions
drop) fitting the criteria (matching flow_pattern, e.g.,
with specific source IP address and destination port). Thus,
once the attack is detected, SDN Forwarding Device will block
all incoming packets matching the pattern. Once the rule is
added, the honeypot starts to monitor when the attack is over.
If the amount of packets monitored on the honeypot drops
below Drop Rule Threshold during Drop Rule Time Window,
the honeypot instructs DRDoS Firewall Application to remove
the corresponding rule from SDN Forwarding Device.

Note, it is impossible to block all the traffic coming to
amplifiers (or even only to their vulnerable services). If we do
this, customers will not have access to these services. Despite
being abused by attackers, they are still legitimate services and
should be accessible by clients from other networks.

B. Implementation Details

a) Amplification Honeypot: In this work, as Amplifica-
tion Honeypot we adapted AmpPot [14]. AmpPot is able to
monitor more than 10 different UDP services vulnerable to
amplification and is widely adopted by the research commu-
nity for the analysis of DRDoS attacks [19]–[22]. We modified
AmpPot in several aspects. First, we removed all rate limiting
mechanisms for incoming traffic. Hence, we are able to receive
all packets hitting the honeypot. Still, the honeypot mildly
participates in the attack (and only in the beginning) due to its
rate limiting for outgoing traffic that was not lifted. Second, we
enabled the honeypot to monitor when an attack to a particular
victim is started and when it is over. Third, we connected
AmpPot to DRDoS Firewall Application.

b) SDN Components: In this work, we use POX [23]
as an SDN Controller. POX is widely adopted by researchers
in the SDN community [24]–[26]. It implements OpenFlow
1.0 specification [27] making our solution forward compat-
ible with newer standards. We developed DRDoS Firewall
Application that runs over POX SDN Controller and uses
its API. Basically, DRDoS Firewall App is an application
that uses the functionality provided by POX SDN Controller,
which is another program running on the same host (blue
rectangle in Figure 1). While a number of related DDoS SDN-
based solutions (see Section V) are built using reactive mode,
our solution is developed over proactive mode. Despite this,
it is not completely proactive per se. Rules are derived at
runtime using the honeypot data, and every new flow does
not necessary result in adding a new rule. Hence, our system
is rather hybrid than completely proactive. Even though such
decision makes our solution dependent on the external system,
it provides more flexibility for its extension. Moreover, such
design is more controller friendly and less prone to DoS
attacks [28] because controller and network apps are not re-
quired to analyze all previously unseen flows. It also provides
low network latency by not spending time on forwarding new
packets to the controller for analysis. The latter is a crucial
property for ISP edge devices dealing with gigabits-per-second
traffic, where even small delays are undesirable.

Upon receiving an attack start alert from Amplification Hon-
eypot, DRDoS Firewall Application using POX OpenFlow-
compatible Southbound API adds a rule to OpenFlow’s Open
vSwitch, which we use as SDN Forwarding Device. To add a
rule, DRDoS Firewall Application creates a ofp_flow_mod
message to execute an OFPFC_ADD command. The appli-
cation fills message’s match structure with the values ob-
tained from the honeypot data: nw_src – source IP address;
tp_dst – destination port.

All packets that match this criteria are assigned with a drop
action. One particular case is the nw_src field. It should be
mentioned that adversaries often attack a whole subnetwork
not only on a single IP address. In order to cover this case, we
added a feature to our DRDoS Firewall Application to block an
entire subnetwork. This functionality relies on a partial match
of IP addresses implemented in POX.

c) System Simulation: We validated our approach by
simulating a simplified case using GNS3 network emula-
tor [29]. GNS3 supports multiple emulators, which can be used
in GNS3 projects, including Dynamips; Docker containers;
Qemu, Virtualbox and VMWare virtual machines (VMs). In
this work, we extensively rely on Docker. Docker containers
run on the same host kernel, thus consuming considerably less
system resources than traditional VMs, that allows researchers
to increase considerably the number of emulated devices.
GNS3 supports multiple containers that can be run as parts
of a topology. In this work, we build separate Docker images
to run SDN Controller, Amplification Honeypot, a vulnerable
amplifier host, attacker and victim machines, and virtual Open
vSwitch [30] appliance for SDN Forwarding Device.

III. EVALUATION

A. Dataset

The main information supplier for our system is Amplifica-
tion Honeypot. Therefore, to make close-to-reality judgements
we have to use real data collected from a honeypot. To achieve
this goal, we modified AmpPot [14] so it is able to record
details about all incoming requests. As a dataset we use one
month data collected in October 2017. At the time, the hon-
eypot was already operational for several months. Although
for the evaluation of our system we employ the information
only about the arrival time, source IP address and destination
UDP port, we share the whole dataset with the community1. It
occupies more than 52Gb of disk space in a highly compressed
columnar storage format called Parquet [31] widely used in
Big Data systems for efficient data storage.

Figure 3 shows the amount of requests our honeypot re-
ceived each day. We can see that on average it receives around
204 million packets a day (maximum number is around 335
million packets recorded on Oct. 31, while minimum value is
about 95 million recorded on Oct. 1). The data on the figure are
grouped by the destination port that identifies the vulnerable
protocol used to attack victims. As it can be seen, in terms
of the number of requests, the most heavily used protocols to
launch attacks are: NTP (123) – 192.3 million requests per
day on average, DNS (53) – 7.5 million, CharGen (19) – 2.3
million, and RIPv1 (520) – 2.2 million. Not surprisingly, due
to its high amplification factor (around 550 [20]) NTP remains
one of the most attractive protocol for attackers.

B. System Parameter Evaluation

1) Honeypot Parameters: To identify the start and the
end of attacks, we rely on four parameters introduced in
Section II-A: Add Rule Time Window (ar_tw), Add Rule
Threshold (ar_th); and Drop Rule Time Window (dr_tw),
Drop Rule Threshold (dr_th). We mark a particular flow as
an attack if we have received at least ar_th packets matching
flow pattern in less than ar_tw seconds. Correspondingly, an
attack is finished if we have received less than dr_th packets
matching flow pattern during dr_tw seconds. In order to

1https://quiltdata.com/package/zyrikby/amppot full data

20
17

-1
0-

1
20

17
-1

0-
2

20
17

-1
0-

3
20

17
-1

0-
4

20
17

-1
0-

5
20

17
-1

0-
6

20
17

-1
0-

7
20

17
-1

0-
8

20
17

-1
0-

9
20

17
-1

0-
10

20
17

-1
0-

11
20

17
-1

0-
12

20
17

-1
0-

13
20

17
-1

0-
14

20
17

-1
0-

15
20

17
-1

0-
16

20
17

-1
0-

17
20

17
-1

0-
18

20
17

-1
0-

19
20

17
-1

0-
20

20
17

-1
0-

21
20

17
-1

0-
22

20
17

-1
0-

23
20

17
-1

0-
24

20
17

-1
0-

25
20

17
-1

0-
26

20
17

-1
0-

27
20

17
-1

0-
28

20
17

-1
0-

29
20

17
-1

0-
30

20
17

-1
0-

31

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f R
eq

ue
st

s

1e8
17
19
53
123

137
161
520
1434

1900
5060
5061

Fig. 3. Amount of Requests by Destination Port

detect attack start, we maintain a hashmap that for each flow
(identified by its flow pattern, e.g., src_ip: 203.0.113.4 -
dst_port: 53) creates a queue, size of which is equal to
ar_th. When the honeypot receives a packet matching this
flow pattern, it appends its timestamp in the beginning of the
queue. After adding it, we compute the difference between the
first timestamp in the queue and the last. If the difference is
less than ar_tw and the queue is full, we issue Attack Start
Alert. Once the attack is started, we create a similar structure
for drop candidates.

Our approach allows us to reduce memory consumption and
improve performance. Indeed, the amount of the consumed
memory depends only on the amount of flows. In our dataset,
the amount of flows does not exceed 11,000 entities per day
(see Figure 4). Therefore, total memory overhead for one
day data is maximum 9MB (11,000 flows, 100 timestamps
in each queue, 8 bytes to store one timestamp, 6 bytes to
identify a queue). Moreover, the computational overheads are
also negligible in this case. The computational complexity is
O(1), that corresponds to adding an entry into a queue.

2) SDN Components Parameters: Flow rules are stored
in the network device memory in flow tables. Obviously,
these network devices have a finite memory capacity limiting
the amount of rules that can be stored. Typically, modern
equipment can store roughly 8,000 entries; more advanced
hardware samples are able to increase this number up to
500,000 [32]. Another important constraint is the amount of
table modification calls a controller can handle per second.
Currently, the throughput of these devices varies from 38 to
1000 flow_mod operations per second [32]. Thus, the prac-
ticality of our approach depends if we fit these constraints. In
order to evaluate this, we developed a simulator of our system.
It is fed with the data from our dataset, however, instead of
issuing alerts to the controller it records the timestamp of every
flow_mod operation and the current amount of rules. We
add a filtering rule if we have received at least 100 packets
(ar_th) with the same key in the last 1 hour (ar_tw). Such
conservative values allow us to whitelist safely the scanners2

2Please refer to the original paper [14] for the methodology and the results
of the scanning activity analysis.

while still blocking the amplification attacks. A rule is dropped
if we have received less than 2 packets (dr_th) with the same
key in the last 1 hour (dr_tw). Figure 4 shows the amount
of flows related to scanning and attacking activities.

Figure 5a shows maximum number of rules simultaneously
active on the switch in each day. On average, this value is
equal to 422. However, on Oct. 11 it reaches 2,239. In general,
this value is at least three times lower than the capacity of
the modern network devices [32]. Still, we can use whole
/24 subnetwork as a part of the key instead of particular IP
address in order to reduce this number. It is quite common
that attackers launch DDoS attacks at a whole /24 subnetwork
rather than a single IP address. There are two rationales for
such behavior. First, often the target of attackers is not a single
IP but rather the whole organization, which usually has several
public IP addresses from the same subnetwork. Second, such
approach allows adversaries to bypass protection mechanisms
detecting an attack if the amount of packets to a particular IP
exceeds a predefined threshold. Figure 5b shows the amount
of rules if we use whole /24 subnetwork instead of single IP
address. In this case, the maximum amount of simultaneously
active rules is equal to 395 and the average is 288.

In Figure 7, blue (key: src_ip-dst_port) and orange
(key: src_subnet-dst_port) lines show how the amount
of rules changes during Oct. 11. As it can be seen, two spikes
of the blue line at 7:00-9:00 and 13:00-15:00 are smoothed
if subnetwork is used. It is clear, in these periods of time
adversaries targeted whole subnetworks rather than a single
IP. At the same time, on Oct. 21 we do not observe such
behavior: the green and red lines are almost fused into one.

In Figure 6, we visualize the maximum frequency of
flow_mod calls (in Figure 6a key is src_ip-dst_port,
while in Figure 6b it is src_subnet-dst_port). The
maximum observed frequency across all the month is 78
flow_mod calls per second (Hz) for src_ip-dst_port.
This number is twice higher than the lower bound of 38
operations per second [32]. Unfortunately, the usage of /24
subnetwork instead of specific IP address does not help as
before. Indeed, even with the src_subnet-dst_port) key
we still reach the maximum frequency of 76 flow_mod calls
per second, which can be clearly seen in Figure 8.

However, in Figure 8 we can see that this frequency is not
constant during the whole day. There is just one big spike at
11:25:57. In the rest of the day, the frequency barely exceeds
20 operations per second during several very short periods.
Therefore, the more sophisticated solution to the problem
is to add to our system the awareness about SDN network
constraints and smooth the spikes according to the given
limitations. Despite the fact our system will allow to pass
slightly more attack packets in this case, this amount will be
still negligible because 90% of the days we observe maximum
frequency of 27 Hz or less.

One could expect the maximum frequency of the
flow_mod calls is achieved in the same day when the
maximum number of rules is observed. However, as we see
from Figures 5 and 6 this is not the case. Maximum number

of simultaneously active rules is observed on Oct. 11, while
maximum frequency is spotted on Oct. 21. That is why we
selected these two days for closer inspection.

In general, the experiments show the practicality of our
approach. With the current rapid development of both hard-
ware and software, it will consume minor resources bringing
considerable benefits.

3) Delays: Figure 9 shows the attack phases. On this figure,
the dots represent packets belonging to one flow. The period
between the add rule (ar) and drop rule events (dr) is the
protection time, because during this interval our system blocks
amplification requests. Note, if an attacker starts and stops
to abuse amplifiers instantly, we might not need to wait
additional time and could drop the rule when the last packet
(dr lp) arrives. We call this interval effective protection time.
We call the time between the 0’th (the ar fp event; fp means
first packet) and ar th’th (the ar event) packets which is less
or equal to ar tw, as the attack detection phase. The time
before the ar fp event we call as boot phase.

Figure 10 shows experimental cumulative distribution func-
tions (ECDFs) for boot, attack detection and effective pro-
tection times for the src_ip-dst_port key limited to
two minutes interval3. In order to plot this graph, we se-
lected the corresponding durations for all attack-related flows
in the month. In general, we registered 121,648 (79%)
attack and 33,255 (21%) scanner related flows for the
src_ip-dst_port key; 113,232 (94%) and 6,706 (6%)
correspondingly for the src_subnet-dst_port key. First,
Figure 10 shows that more than 99% of all flows have boot
time equal to 0 meaning that an attack usually starts almost
instantly, our selected values of ar th and ar tw allow us
effectively capture attack related behavior. Second, for more
than 90% of attack flows, attack detection time is less than 1
minute. This means that the attacks are usually quite intensive
and once started they lead to the add rule generation event
quite fast. Third, Figure 10 confirms that for more than 95% of
attacks the effective protection time is more than 15 seconds.
This gives enough time to deploy a rule to block an attack and
get benefits from our solution.

In order to assess the amount of attack packets our sys-
tem could miss, we have plotted attack packet speed ECDF
(Figure 11). This graph shows 90% of all attacks generate
less than 250 packets per second. If a cumulative delay for
rule deployment is less than 1 second (a very conservative
assumption [33]) the volume of such attacks will be less than
250 packets for 90% of the flows.

C. Advantages Evaluation

Based on the parameters described in the previous sections,
we evaluate the benefits in terms of the saved bandwidth,
which our system can bring to ISPs. In order to achieve this
goal, we make the following assumption. We evaluate gains
caused by the honeypot, i.e., we assume that our AmpPot is
the only vulnerable service in an ISP network. However, a

3The ECDF for src_subnet-dst_port is similar.

20
17

-1
0-

1
20

17
-1

0-
2

20
17

-1
0-

3
20

17
-1

0-
4

20
17

-1
0-

5
20

17
-1

0-
6

20
17

-1
0-

7
20

17
-1

0-
8

20
17

-1
0-

9
20

17
-1

0-
10

20
17

-1
0-

11
20

17
-1

0-
12

20
17

-1
0-

13
20

17
-1

0-
14

20
17

-1
0-

15
20

17
-1

0-
16

20
17

-1
0-

17
20

17
-1

0-
18

20
17

-1
0-

19
20

17
-1

0-
20

20
17

-1
0-

21
20

17
-1

0-
22

20
17

-1
0-

23
20

17
-1

0-
24

20
17

-1
0-

25
20

17
-1

0-
26

20
17

-1
0-

27
20

17
-1

0-
28

20
17

-1
0-

29
20

17
-1

0-
30

20
17

-1
0-

31

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f F
lo

ws

attacks
scanners

(a) Key: src_ip-dst_port

20
17

-1
0-

1
20

17
-1

0-
2

20
17

-1
0-

3
20

17
-1

0-
4

20
17

-1
0-

5
20

17
-1

0-
6

20
17

-1
0-

7
20

17
-1

0-
8

20
17

-1
0-

9
20

17
-1

0-
10

20
17

-1
0-

11
20

17
-1

0-
12

20
17

-1
0-

13
20

17
-1

0-
14

20
17

-1
0-

15
20

17
-1

0-
16

20
17

-1
0-

17
20

17
-1

0-
18

20
17

-1
0-

19
20

17
-1

0-
20

20
17

-1
0-

21
20

17
-1

0-
22

20
17

-1
0-

23
20

17
-1

0-
24

20
17

-1
0-

25
20

17
-1

0-
26

20
17

-1
0-

27
20

17
-1

0-
28

20
17

-1
0-

29
20

17
-1

0-
30

20
17

-1
0-

31

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f F
lo

ws

attacks
scanners

(b) Key: src_subnet-dst_port

Fig. 4. Number of Flows

20
17

-1
0-

1
20

17
-1

0-
2

20
17

-1
0-

3
20

17
-1

0-
4

20
17

-1
0-

5
20

17
-1

0-
6

20
17

-1
0-

7
20

17
-1

0-
8

20
17

-1
0-

9
20

17
-1

0-
10

20
17

-1
0-

11
20

17
-1

0-
12

20
17

-1
0-

13
20

17
-1

0-
14

20
17

-1
0-

15
20

17
-1

0-
16

20
17

-1
0-

17
20

17
-1

0-
18

20
17

-1
0-

19
20

17
-1

0-
20

20
17

-1
0-

21
20

17
-1

0-
22

20
17

-1
0-

23
20

17
-1

0-
24

20
17

-1
0-

25
20

17
-1

0-
26

20
17

-1
0-

27
20

17
-1

0-
28

20
17

-1
0-

29
20

17
-1

0-
30

20
17

-1
0-

31

0

500

1000

1500

2000

M
ax

 N
um

be
r o

f R
ul

es

(a) Key: src_ip-dst_port

20
17

-1
0-

1
20

17
-1

0-
2

20
17

-1
0-

3
20

17
-1

0-
4

20
17

-1
0-

5
20

17
-1

0-
6

20
17

-1
0-

7
20

17
-1

0-
8

20
17

-1
0-

9
20

17
-1

0-
10

20
17

-1
0-

11
20

17
-1

0-
12

20
17

-1
0-

13
20

17
-1

0-
14

20
17

-1
0-

15
20

17
-1

0-
16

20
17

-1
0-

17
20

17
-1

0-
18

20
17

-1
0-

19
20

17
-1

0-
20

20
17

-1
0-

21
20

17
-1

0-
22

20
17

-1
0-

23
20

17
-1

0-
24

20
17

-1
0-

25
20

17
-1

0-
26

20
17

-1
0-

27
20

17
-1

0-
28

20
17

-1
0-

29
20

17
-1

0-
30

20
17

-1
0-

31

0

50

100

150

200

250

300

350

400

M
ax

 N
um

be
r o

f R
ul

es

(b) Key: src_subnet-dst_port

Fig. 5. Maximum Number of Rules

20
17

-1
0-

1
20

17
-1

0-
2

20
17

-1
0-

3
20

17
-1

0-
4

20
17

-1
0-

5
20

17
-1

0-
6

20
17

-1
0-

7
20

17
-1

0-
8

20
17

-1
0-

9
20

17
-1

0-
10

20
17

-1
0-

11
20

17
-1

0-
12

20
17

-1
0-

13
20

17
-1

0-
14

20
17

-1
0-

15
20

17
-1

0-
16

20
17

-1
0-

17
20

17
-1

0-
18

20
17

-1
0-

19
20

17
-1

0-
20

20
17

-1
0-

21
20

17
-1

0-
22

20
17

-1
0-

23
20

17
-1

0-
24

20
17

-1
0-

25
20

17
-1

0-
26

20
17

-1
0-

27
20

17
-1

0-
28

20
17

-1
0-

29
20

17
-1

0-
30

20
17

-1
0-

31

0

10

20

30

40

50

60

70

80

M
ax

 fl
ow

_m
od

 F
re

qu
en

cy

(a) Key: src_ip-dst_port

20
17

-1
0-

1
20

17
-1

0-
2

20
17

-1
0-

3
20

17
-1

0-
4

20
17

-1
0-

5
20

17
-1

0-
6

20
17

-1
0-

7
20

17
-1

0-
8

20
17

-1
0-

9
20

17
-1

0-
10

20
17

-1
0-

11
20

17
-1

0-
12

20
17

-1
0-

13
20

17
-1

0-
14

20
17

-1
0-

15
20

17
-1

0-
16

20
17

-1
0-

17
20

17
-1

0-
18

20
17

-1
0-

19
20

17
-1

0-
20

20
17

-1
0-

21
20

17
-1

0-
22

20
17

-1
0-

23
20

17
-1

0-
24

20
17

-1
0-

25
20

17
-1

0-
26

20
17

-1
0-

27
20

17
-1

0-
28

20
17

-1
0-

29
20

17
-1

0-
30

20
17

-1
0-

31

0

10

20

30

40

50

60

70

80

M
ax

 fl
ow

_m
od

 F
re

qu
en

cy

(b) Key: src_subnet-dst_port

Fig. 6. Maximum Frequency of flow_mod Calls

real ISP network may contain hundreds or thousands of such
hosts [7]. The gains can be calculated based on the formula:

G =
∑
∀p∈P

(Tp −Mp) ∗ (UPSp ∗BAFp + 52) (1)

where P is a set of all vulnerable protocols, Tp – total number
of packets received by our honeypot for protocol p, Mp –
number of packets missed before a rule is deployed, UPSp –

average UDP payload size for protocol p, BAFp is an average
amplification factor, and 52 is the minimum size of a UDP
packet (24 bytes for Ethernet + 20 for IP + 8 for UDP headers).
For UPSp and BAFp, we used the values reported in [20].

Figure 12 shows the gains (the red part of each bar) obtained
for every day using Formula 1 if the filtering is done by source
IP and destination port. The graph shows similar behavior
and numbers when filtering is done by /24 subnetwork and

01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00 01:00
0

500

1000

1500

2000

Nu
m

be
r o

f R
ul

es
2017-10-11: By IP
2017-10-11: By Subnetwork
2017-10-21: By IP
2017-10-21: By Subnetwork

Fig. 7. Amount of Rules

01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00 01:00
0

10

20

30

40

50

60

70

80

Fr
eq

ue
nc

y
of

 fl
ow

_m
od

 C
al

ls

2017-10-11: By IP
2017-10-11: By Subnetwork
2017-10-21: By IP
2017-10-21: By Subnetwork

Fig. 8. Frequency of flow_mod Calls

fp ar_fp ar dr_lp dr

t
effective protection time

protection time
attack

detection
time boot time

Fig. 9. Attack Phases and Delays

0 20 40 60 80 100 120
Time, s

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

boot
attack detection
effective protection

Fig. 10. Phases Duration ECDF (key: src_ip-dst_port)

destination port. According to the evaluation on our dataset,
our system allows an ISP to filter out approximately 1,505 GB
of garbage traffic a day, with minimum value of 750 GB and
maximum reaching whopping 2,214 GB. Here we underline
that these estimations are done for the case when there is only
one amplifier per each vulnerable protocol. The tiny blue parts
of the bars in Figure 12 represent the approximate amount
of amplified data leaving an ISP network due to the missed
packets. Our calculations show that with the current settings

0 100 200 300 400 500
Speed, pps

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

Fig. 11. Attack Packet Speed ECDF (key: src_ip-dst_port)

20
17

-1
0-

1
20

17
-1

0-
2

20
17

-1
0-

3
20

17
-1

0-
4

20
17

-1
0-

5
20

17
-1

0-
6

20
17

-1
0-

7
20

17
-1

0-
8

20
17

-1
0-

9
20

17
-1

0-
10

20
17

-1
0-

11
20

17
-1

0-
12

20
17

-1
0-

13
20

17
-1

0-
14

20
17

-1
0-

15
20

17
-1

0-
16

20
17

-1
0-

17
20

17
-1

0-
18

20
17

-1
0-

19
20

17
-1

0-
20

20
17

-1
0-

21
20

17
-1

0-
22

20
17

-1
0-

23
20

17
-1

0-
24

20
17

-1
0-

25
20

17
-1

0-
26

20
17

-1
0-

27
20

17
-1

0-
28

20
17

-1
0-

29
20

17
-1

0-
30

20
17

-1
0-

31

0

500

1000

1500

2000

Ap
pr

ox
im

at
e

Si
ze

 o
f A

m
pl

ifi
ed

 D
at

a,
 G

B filtered
missed

Fig. 12. Approximate Gains

we allow less than 0.2% of the amplified traffic to pass.

IV. DISCUSSION

The usage of our system brings considerable advantages
to ISPs. Still, there are also potential drawbacks. In this
section, we discuss the limitations and future extensions of
our approach.

a) Honeypot Discoverability: The ability to filter out
garbage traffic in our system relies on the detection of attacks
by our honeypot. If an attacker is aware about this fact, s/he
may try to discover the IP address of the honeypot.As a result,
the adversary may avoid to use the honeypot as an amplifier
making our system unaware about the ongoing attacks. One
obvious solution to this is to improve the mimicking of the
vulnerable protocols, ideally by deploying real vulnerable
services on different IP addresses and proxing the traffic
through AmpPot [14].

b) Victim Network Blocking: If the honeypot is discov-
ered, the adversary may use it to launch DoS attacks on
legitimate clients. Indeed, the attacker may send several attack
packets with spoofed client’s IP address to the honeypot.
This will result in legitimate requests from the client not
reaching the corresponding service within the ISP network.
A countermeasure is to filter packets by pair of IP address
and destination port (as we have been doing in this work).
Hence, for the client only a subset of services vulnerable for
amplification will be unavailable. Another potential solution is
to perform throttling rather than complete blocking. It is also

possible to analyze additional properties of the packets e.g.,
TTL values [34], to support the decision.

c) Collateral Damage: Obviously, during an attack a
legitimate victim would not be able to use exploited services
of the ISP implementing our approach. Indeed, our system will
block all the packets coming from victim’s IP address to the
service under attack. This may cause service unavailability for
legitimate customers. The situation can be even more severe if
a subnetwork is blocked. Note, such circumstances are unlikely
so as (1) no legitimate clients should use honeypot; (2) it is
difficult for an attacker to pinpoint a honeypot (as we discussed
before) and abuse it. However, one potential remediation
is to use deep packet inspection and block only specific
protocol commands that can be abused, e.g., monlist for
NTP. Additionally, in order to reduce collateral damage it is
also possible to employ ISP network topology. Current ISPs
usually have several entry points. If amplification requests
come through one of these points, it is possible to deploy
filtering rules on the corresponding edge device still allowing
the traffic through other routers to pass.

d) Overloading of Switch Rule Table: If the attacker
knows where the honeypot is, s/he may flood it with lots of
different flows. Thus, the honeypot may create huge amount
of rules that may overwhelm a switch. However, this type of
attack is not unique to our system, rather it is typical for SDN
enabled networks [35]. There are several solutions proposed
that can also be applied to our case [28]. A more specific
approach for our system is to increase Add Rule Threshold
value. In this case, it will require an attacker to spend more
resources to launch this attack.

e) Moving Target: Sometimes an attacker exploits am-
plifiers sequentially, i.e., at one point of time one subset of
amplifiers is used and after a while the adversary switches
to another set. In this case, the attack may be discovered
late if the honeypot is abused in the end. One potential
solution is to deploy several honeypots across the network
and build the intelligence on top of the cumulative data. In
a more extreme case, honeypots can be deployed world-wide
providing necessary information to all interested ISPs. In a
simple case, the information about the attacks from multiple
honeypots is just combined together. That is to say, a source
address - destination port tuple is blocked if it has been spotted
in the attack to at least one honeypot. The work done by
Krämer et al. [14] confirms that the amount of newly observed
flows decreases as the number of honeypots grows: the tenth
honeypot observes less than 10% of new attacks with respect
to the information from nine others. Therefore, having decent
number of honeypots distributed world-wide would allow to
observe almost all attacks. In a more advanced case, to reduce
the amount of false positives an ISP may require an attack
to be spotted by several honeypots before installing a rule.
Krupp et al. [19] showed that in their setup out of 48 deployed
honeypots over 95% of all attacks used at least 4 of them.

f) Attacker Resides in the Same ISP Network: In order
to block incoming amplification requests, an attacker should
reside outside the protected ISP network. If the adversary

is located within the network then the attack requests are
not passing through the edge device and are not blocked.
In this case, the requests will reach vulnerable services, will
be amplified and generate garbage traffic. In order to make
the nettwork proof to this kind of scenario, the ISP should
also implement the BCP 38 recommendations for ingress
traffic filtering [6] on each routing device. Then, amplification
requests will not be able to reach amplifiers in other network
segments. Hence, the deployment of our system may indirectly
influence on the adoption of this best practice.

V. RELATED WORK

There have been several DDoS attack detection and mitiga-
tion solutions proposed in the past for ISPs using honeypots
as one of the components. For instance, Sardana et al. [11]
proposed a system that was designed to detect DDoS attack
traffic using packet entropy variations calculated in small
time windows. Suspicious flows are tagged and redirected
to a honeypot server which monitors and responds to the
attack protecting victim’s host. Even though the system shares
similar components with our approach, the goals are very
different. Sardana’s system aims at protecting end hosts using a
honeypot which substitutes the victim, while our method uses
the data from honeypot to block unwanted traffic to come in.

Li et al. [12] propose an architecture based on SDNs called
DrawBridge to help ISPs to filter unwanted DDoS/DRDoS
traffic. The system tries to bridge the communication gap
between ISPs and victims of DDoS attacks. Currently, ISPs
independently engineer the traffic not taking into account
the fact if the data is welcomed by end users. DrawBridge
allows ISP users (victims) to communicate filtering rules to
the controllers that deploy them at ISP switches blocking the
unwanted traffic. Despite sharing a similar goal as ours, i.e,
filtering garbage traffic at ISPs, their approach heavily relies
on end user’s capability on detecting unwanted traffic that is
a hard task in case if end user hosts are used as DRDoS
amplifiers. The victim side traffic detection, rule formation
criteria, and details of overall system implementation are
not discussed. Another SDN based “DDoS Mitigation as a
Service” framework is proposed by Sahay et al. [13]. The
framework uses ISP customer side intelligence to mitigate
DDoS attacks. Upon detection of an attack an ISP tags
unwanted traffic and redirects it to security middleboxes. This
SDN based framework is limited to flooding based attacks
(such as TCP SYN, UDP, and ICMP flooding) and still aims
at the protection of end clients from DDoS attack.

Few DRDoS detection and mitigation solutions using SDNs
have emerged lately. Yet, the primary focus of these ap-
proaches lies in identifying amplification traffic targeting the
victim side contrary to our focus, i.e., blocking amplification
requests coming into an ISP network. Aizuddin et al. [36] pro-
pose a near-real time flow based DNS amplification detection
and mitigation at the target victim network. DNS replies are
filtered if no matching DNS requests are found. Another recent
SDN based solution addressing DNS amplification problem
was proposed by Xing et al. [37]. Their system aims at

detecting a DNS amplification attack on a victim through
the analysis of packet entropy variation. Once the attack
is detected the system is able to pinpoint amplifiers within
the same network and isolate them. More recently, Chen et
al. [38] offered a machine learning based solution to detect
DRDoS attacks. A system categorizes DNS/NTP packets using
an SVM classifier and blocks the flows belonging to an
amplification attack using an SDN controller. The system is
among a few able to detect amplification request packets and
thus, to prevent silent amplification by vulnerable hosts in the
network. However, the solution is limited to DNS and NTP
protocols. Moreover, it requires quite substantial time to make
a decision (average response time for DNS is 11.8s), while
our system could react almost immediately.

VI. CONCLUSION

In this paper, we propose a novel approach to filter out
amplification traffic from an ISP network. It relies on data col-
lected from an amplification honeypot to derive filtering rules.
We implemented the prototype of our method employing SDN,
and the results of our evaluation based on the real honeypot
data show the practicality of our approach. Indeed, in terms
of SDN component constraints the system can be deployed
even on low-end SDN hardware. Our calculations confirm
that the method helps in filtering out substantial amounts of
garbage traffic saving ISP’s money and improving QoS for
its customers. Moreover, by restricting vulnerable hosts in
an attack participation, it helps victims making the ongoing
“storm” lighter. Additionally, the deployment of our system
encourages ISPs to implement ingress filtering best practices.
Being implemented worldwide, these recommendations will
make spoofing attacks impossible.

REFERENCES

[1] K. Team. How to Generate 2TB/s Reflection DDoS Data Flow via
a Family Network. [Online]. Available: http://powerofcommunity.net/
poc2017/shengbao.pdf

[2] S. Kottler. (2018, March) February 28th DDoS Incident Report.
[Online]. Available: https://githubengineering.com/ddos-incident-report/

[3] (2014) NTP Amplification Attacks Using CVE-2013-5211. [Online].
Available: https://www.us-cert.gov/ncas/alerts/TA14-013A

[4] Open Resolver Project. [Online]. Available: http://openresolverproject.
org/

[5] https://twitter.com/037. MEMFIXED DDoS Mitigation Tool. [Online].
Available: https://github.com/649/Memfixed-Mitigation-Tool

[6] D. S. P. Ferguson, “Network ingress filtering: Defeating denial of
service attacks which employ ip source address spoofing,” RFC, Tech.
Rep., May 2000. [Online]. Available: https://tools.ietf.org/html/rfc2827

[7] C. Rossow, “Amplification Hell: Revisiting Network Protocols for DDoS
Abuse,” in Proc. of NDSS, February 2014.

[8] M. Jackson. Ofcom Enhances UK Code of Practice for Broadband ISP
Speeds. [Online]. Available: https://goo.gl/q2HHks

[9] How uk isps are charged for broadband - the cost of IPStream.
[Online]. Available: https://goo.gl/ofEh1X

[10] O. Kharif. YouTube, Netflix Videos Found to Be Slowed by Wireless
Carriers. [Online]. Available: https://goo.gl/QTGA9G

[11] A. Sardana, K. Kumar, and R. C. Joshi, “Detection and honeypot based
redirection to counter ddos attacks in isp domain,” in Proc. of IAS, 2007,
pp. 191–196.

[12] J. Li, S. Berg, M. Zhang, P. Reiher, and T. Wei, “Drawbridge: Software-
defined ddos-resistant traffic engineering,” in Proc. of SIGCOMM, 2014,
pp. 591–592.

[13] R. Sahay, G. Blanc, Z. Zhang, and H. Debar, “Towards autonomic ddos
mitigation using software defined networking,” in Proc. of Security of
Emerging Networking Technologies Workshop, 2015.

[14] L. Krämer, J. Krupp, D. Makita, T. Nishizoe, T. Koide, k. Yoshioka, and
C. Rossow, “AmpPot: Monitoring and Defending Against Amplification
DDoS Attacks,” in Proc. of RAID, 2015, pp. 615–636.

[15] S. Hares, D. Lopez, M. Zarny, C. Jacquenet, R. Kumar, and J. Jeong,
“Interface to network security functions (I2NSF): Problem statement
and use cases,” RFC, Tech. Rep. 8192, July 2017. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc8192.txt

[16] P. Marques, N. Sheth, R. Raszuk, B. Greene, J. Mauch, and
D. McPherson, “Dissemination of Flow Specification Rules,” RFC,
Tech. Rep. 5575, August 2009. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc5575.txt

[17] L. Gao and F. Wang, “The extent of AS path inflation by routing
policies,” in Proc. of GLOBECOM, Nov 2002, pp. 2180–2184.

[18] A. Mortensen, F. Andreasen, T. Reddy, N. Teague, R. Compton, and
C. Gray, “Distributed-denial-of-service open threat signaling (DOTS)
architecture,” WG Draft, Tech. Rep., 2019. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-dots-architecture/

[19] J. Krupp, M. Backes, and C. Rossow, “Identifying the Scan and Attack
Infrastructures Behind Amplification DDoS Attacks,” in Proc. of CCS,
2016, pp. 1426–1437.

[20] M. Aupetit, Y. Zhauniarovich, G. Vasiliadis, M. Dacier, and Y. Boshmaf,
“Visualization of Actionable Knowledge to Mitigate DRDoS Attacks,”
in Proc. of VizSec, 2016, pp. 1–8.

[21] J. Krupp, M. Karami, C. Rossow, D. McCoy, and M. Backes, “Linking
Amplification DDoS Attacks to Booter Services,” in Proc. of RAID,
2017, pp. 427–449.

[22] L. Berti-Equille and Y. Zhauniarovich, “Profiling DRDoS Attacks with
Data Analytics Pipeline,” in Proc. of CIKM, 2017, pp. 1983–1986.

[23] The POX Network Software Platform. [Online]. Available: https:
//github.com/noxrepo/pox

[24] M. Gupta, J. Sommers, and P. Barford, “Fast, Accurate Simulation for
SDN Prototyping,” in Proc. of HotSDN, 2013, pp. 31–36.

[25] S. M. Mousavi and M. St-Hilaire, “Early Eetection of DDoS Attacks
against SDN Controllers,” in Proc. of ICNC, 2015, pp. 77–81.

[26] Q. Niyaz, W. Sun, and A. Y. Javaid, “A Deep Learning Based DDoS De-
tection System in Software-Defined Networking (SDN),” EAI Endorsed
Transactions on Security and Safety, vol. 17, no. 12, 12 2017.

[27] N. McKeown, H. B. T. Anderson, L. P. G. Parulkar, S. S. J. Rexford,
and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp.
69–74, 2008.

[28] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A Survey of Security in
Software Defined Networks,” IEEE Communications Surveys Tutorials,
vol. 18, no. 1, pp. 623–654, Firstquarter 2016.

[29] GNS3 — The Software that Empowers Network Professionals. [Online].
Available: https://www.gns3.com

[30] Open vSwitch. [Online]. Available: https://www.openvswitch.org
[31] Apache Parquet. [Online]. Available: https://parquet.apache.org/
[32] D. Kreutz, F. M. V. Ramos, P. Verı́ssimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proc. of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[33] K. He, J. Khalid, S. Das, A. Gember-Jacobson, C. Prakash, A. Akella,
L. E. Li, and M. Thottan, “Latency in Software Defined Networks:
Measurements and Mitigation Techniques,” in Proc. of SIGMETRICS,
2015, pp. 435–436.

[34] M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, and
B. Stock, “On the Feasibility of TTL-based Filtering for DRDoS
Mitigation,” in Proc. of RAID, September 2016.

[35] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we Ready
for SDN? Implementation Challenges for Software-Defined Networks,”
IEEE Communications Magazine, vol. 51, no. 7, pp. 36–43, July 2013.

[36] A. A. Aizuddin, M. Atan, M. Norulazmi, M. M. Noor, S. Akimi, and
Z. Abidin, “Dns amplification attack detection and mitigation via sflow
with security-centric sdn,” in Proc. of ICUIMC, 2017, pp. 3:1–3:7.

[37] X. Xing, T. Luo, J. Li, and Y. Hu, “A defense mechanism against the
dns amplification attack in sdn,” in Proc. of IC-NIDC, 2016, pp. 28–33.

[38] C. C. Chen, Y. R. Chen, W. C. Lu, S. C. Tsai, and M. C. Yang,
“Detecting amplification attacks with software defined networking,” in
Proc. of DSC, Aug 2017, pp. 195–201.

