
Dissecting Android Cryptocurrency Miners

Stanislav Dashevskyi∗
Forescout Technologies
Eindhoven, Netherlands

stanislav.dashevskyi@forescout.com

Yury Zhauniarovich
Independent Researcher

Uzda, Belarus
yury@zhauniarovich.com

Olga Gadyatskaya†
LIACS, Leiden University

Leiden, Netherlands
o.gadyatskaya@liacs.leidenuniv.nl

Aleksandr Pilgun
SnT, University of Luxembourg
Esch-sur-Alzette, Luxembourg

aleksandr.pilgun@uni.lu

Hamza Ouhssain‡
ARHS Developments
Sanem, Luxembourg
hamza.ouhssain@arhs-
developments.com

ABSTRACT
Cryptojacking applications pose a serious threat to mobile devices.
Due to the extensive computations, they deplete the battery fast
and can even damage the device. In this work we make a step
towards combating this threat. We collected and manually verified
a large dataset of Android mining apps. In this paper, we analyze
the gathered miners and identify how they work, what are the most
popular libraries and APIs used to facilitate their development,
and what static features are typical for this class of applications.
Further, we analyzed our dataset using VirusTotal. The majority
of our samples is considered malicious by at least one VirusTotal
scanner, but 16 apps are not detected by any engine; and at least 5
apks were not seen previously by the service.

Mining code could be obfuscated or fetched at runtime, and there
are many confusing miner-related apps that actually do not mine.
Thus, static features alone are not sufficient for miner detection. We
have collected a feature set of dynamic metrics both for miners and
unrelated benign apps, and built a machine learning-based tool for
dynamic detection. Our BrenntDroid tool is able to detect miners
with 95% of accuracy on our dataset.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation; Mobile
platform security; • Social and professional topics→Malware
/ spyware crime; • General and reference→ Empirical studies.
ACM Reference Format:
Stanislav Dashevskyi, Yury Zhauniarovich, Olga Gadyatskaya, Aleksandr
Pilgun, and Hamza Ouhssain. 2020. Dissecting Android Cryptocurrency
Miners. In Proceedings of the Tenth ACM Conference on Data and Application

∗This research was done while Stanislav was at SnT, University of Luxembourg.
†This research was done while Olga was at SnT, University of Luxembourg.
‡This research was done while Hamza was at University of Luxembourg.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7107-0/20/03. . . $15.00
https://doi.org/10.1145/3374664.3375724

Security and Privacy (CODASPY ’20), March 16–18, 2020, New Orleans, LA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3374664.
3375724

1 INTRODUCTION
The recent wave of cryptocurrencies contributed to the debut of
a new malware class called cryptominers, cryptojackers, or simply
miners. After infecting a device, these malicious applications start
solving computationally hard puzzles that support the cryptocur-
rency network, getting rewards for their work that are accumulated
on the miner developer’s account. The ease of monetization and
the anonymity factors enabled the quick growth of the mining mal-
ware. In 2017, the skyrocketing price of cryptocurrencies caused
by the enormous attention to these technologies has played a role
in the cryptojacking proliferation [11]. Not surprisingly, miners
have quickly gained popularity and appeared among the top se-
curity threats in 2018 [8, 29]. Security researchers have also paid
attention, with many papers focusing on browser-based and binary
mining [12, 14, 18, 20–22, 25–27] appearing recently.

Due to the cryptocurrencies boom, end-user demand for mining
applications has emerged. Prior to July 2018 everybody could simply
find mining applications on Google Play and attempt to generate
a few cryptocoins on the mobile device. Yet, as the smartphone-
based mining no longer generates interesting profits for the benign
user [5, 27], the interest to these apps has significantly diminished.
Google has removedmining apps fromGoogle Play, but they are still
available on alternative markets. The “crash” of the cryptocurrency
market in the end of 2018 forced the operation of several mining
services to shut down. For instance, recently the popular service
CoinHive has announced discontinuation of its service [6]. Still,
there are many alternatives, like CryptoLoot and JSEcoint, which
are important cyber threats today1 and that may further proliferate
during the next crypto boom. Due to the rising price of the Monero
coin, in Summer 2019 the cryptomining malware was revitalized2.

The Android ecosystem itself is huge, comprising not onlymobile
devices but also wearable technology, TVs and cars. It is therefore a
lucrative target for adversaries due to the large number of potential

1https://www.helpnetsecurity.com/2019/04/10/cryptomining-still-dominates/
2https://www.zdnet.com/article/crypto-mining-malware-saw-new-life-over-the-
summer-as-monero-value-tripled/

https://doi.org/10.1145/3374664.3375724
https://doi.org/10.1145/3374664.3375724
https://doi.org/10.1145/3374664.3375724
https://www.helpnetsecurity.com/2019/04/10/cryptomining-still-dominates/
https://www.zdnet.com/article/crypto-mining-malware-saw-new-life-over-the-summer-as-monero-value-tripled/
https://www.zdnet.com/article/crypto-mining-malware-saw-new-life-over-the-summer-as-monero-value-tripled/


victims. Even smart TV appliances can now be infected with min-
ing Android apps3. Security industry reports mention that mining
capabilities are being introduced to existing malware families or
added into repackaged Android applications [8, 11, 29]. Attackers
are constantly looking into different ways to deliver malware to
Android-based devices. For instance, recently cryptomining mal-
ware was distributed in 21 different countries via open Android
Debug Bridge (ADB) ports4.

Indeed, mobile mining has certain advantages for the attackers.
By running in the background and when the user is not present,
the mining code packaged as an app can be more persistent than
website visits. The cost of creating and distributing a miner is neg-
ligible, given the ease of application repackaging [28] on Android
and the availability of mining libraries [18]. But miners are partic-
ularly dangerous for mobile devices. The extensive computations
performed during the mining process drain the battery and increase
the temperature of the device, potentially causing irreversible dam-
age. For example, a malicious family called Loapi causes the mobile
device’s battery to overcook within 48 hours after the infection [17].
Therefore, there is a need to study the Android miner phenomenon
and to be able to detect such applications.

Contributions. To the best of our knowledge, our paper presents
the first large study of Android miners. We make the following
contributions.
• We have collected a large dataset of mining Android apps, which
includes both Web-based and binary-based cryptocurrency min-
ers. As our focus is on the Android mining phenomenon, our
dataset contains malicious mining applications, and also honest
miners that declare their mining activity upfront and could be
solicited by the users. We also include properly labelled samples
of non-mining applications that can confuse the basic detection
approaches (scam, wallet apps, etc.). Our dataset has been fully
confirmed by manual analysis. We share our labelled dataset and
the metadata with the community5.

• We share insights on how (JavaScript) and binary Androidminers
work, how the mining code is injected, and what are the most
popular libraries/APIs for mining. Particularly, we have identified
8 common mining libraries that are used in 671 miners.

• At least 5 miners from our dataset have previously never been
uploaded to the popular VirusTotal service. We have also found
16 apps, including both malicious and honest miners, that are
not detected by any VirusTotal scanner. Finally, we have ranked
the antivirus engines at VirusTotal based on our dataset.

• Using our verified dataset as the ground truth, we performed
dynamic analysis of the miners and compared the results with
randomly selected benign applications. We identified a set of
dynamic metrics that are the most efficient for accurate classi-
fication results, achieving 95% of accuracy and the AUC score
of 0.988±0.009. Based on our findings, we propose the Brennt-
Droid tool that can be used to detect miners dynamically and to
check if an app indeed mines cryptocurrencies.

3http://blog.netlab.360.com/adb-miner-more-information-en/
4https://blog.trendmicro.com/trendlabs-security-intelligence/cryptocurrency-
mining-botnet-arrives-through-adb-and-spreads-through-ssh/
5The dataset is available upon request at https://standash.github.io/android-miners-
dataset/

1 <script src="https://coinhive.com/lib/coinhive.min.js"/>
2 <script>
3 var miner = new CoinHive.Anonymous('SITE_KEY');
4 miner.start();
5 </script>

Listing 1: JavaScript miner initialization example

2 ANDROID CRYPTOCURRENCY MINING
There exist two approaches for mining cryptocurrencies on mobile
devices: (1) the mining code is embedded into a Web page that can
be executed via a Web browser (we refer to them as JavaScript
miners from now on); (2) the mining code is packed into a binary
that can be executed by a device (we will call them binary miners).
The Web-based approach to cryptojacking is typically used on
malicious websites, while the binary approach is favored by the
authors of the traditional computer malware. Importantly, both
these approaches can be used within Android apps. We refer the
interested reader to our technical report that provides more details
about the integration of Web content and native code into Android
apps [9].

The miners that explicitly ask the user consent for mining (le-
gitimate) and those that attempt to hide the mining process (illicit)
could be created using either of the methods. Besides, there are also
scam miners – applications that only pretend to mine cryptocur-
rencies, but do not actually deliver.

JavaScript miners typically rely upon drive-by mining services,
e.g., CoinHive, CoinImp or CryptoLoot6, that provide the necessary
infrastructure to mine cryptocurrencies such as Monero. This is
particularly attractive for regular users, as Monero can be mined
using the CPU, instead of the expensive GPU or other specialized
hardware [18]. There exist other “lightweight” cryptocurrencies,
e.g., Litecoin and Ethereum, that can be mined using commodity
hardware. However, according to various reports, Monero domi-
nates them [8, 12, 27]. To facilitate cryptocurrency mining with
comparatively weak hardware, mining service providers support
creating mining pools, when several devices combine their compu-
tational power to perform mining collectively.

Listing 1 shows an example of an initialization script that, when
embedded into a Web page, starts mining Monero once the page
is loaded. The “SITE_KEY” needs to be substituted by a key value
connected to the cryptocurrency wallet that will receive the mining
reward. In this example, the anonymous version of the CoinHive API
is used: the real wallet public key is proxied through the site keys
associated to it, and the “identity” of the wallet behind the miner
cannot be inferred. Such a simple mining initialization script is
particularly popular in malicious website mining, as it is takes min-
imal effort to embed it, and provides anonymity [14]. The script in
Listing 1 can be invoked via theWebView component that supports
loading Web pages and JavaScript code in Android apps. Therefore,
Android apps can use the same mechanism for mining crypto as
regular websites.

Binary Android miners can load a native mining library via the
System.loadLibrary(...) interface. Then the declared native

6https://coinhive.com/ (this service is down since Spring 2019, but it has been active
during the early stages of this work), https://www.coinimp.com/, https://crypto-loot.
com/

http://blog.netlab.360.com/adb-miner-more-information-en/
https://blog.trendmicro.com/trendlabs-security-intelligence/cryptocurrency-mining-botnet-arrives-through-adb-and-spreads-through-ssh/
https://blog.trendmicro.com/trendlabs-security-intelligence/cryptocurrency-mining-botnet-arrives-through-adb-and-spreads-through-ssh/
https://standash.github.io/android-miners-dataset/
https://standash.github.io/android-miners-dataset/
https://coinhive.com/
https://www.coinimp.com/
https://crypto-loot.com/
https://crypto-loot.com/


1 ./minerd −−url stratum+tcp://eu.multipool.us:7777 −−userpass USERNAME:PASSWORD

Listing 2: Binary miner initialization example

methods are called from the managed code. Listing 2 shows an
example of another approach, when a miner binary (a MinerD7

executable) is called from a shell.

3 DATASET COLLECTION
While building our dataset, we performed many iterations of the
following steps: (1) find a large sample of potential Android min-
ers using string search, and download them; (2) perform manual
analysis to find evidence that these apps are miners and discard
false positives; (3) update the search strings used at the step (1)
with new patterns discovered at the step (2).

We seeded our dataset by collecting several samples of Android
miners using hashes reported in relevant security industry blog
posts and white papers, e.g., the SophosLabs report [29]. We have
also collected mining apps from different Android stores (Google
Play8, F-droid, etc.). This initial dataset has been used to create a
set of strings and rules in the YARA notation9 indicating mining
payload in the code and metadata.

Our initial set of miner-related strings and YARA rules contained
only a few generic keywords, e.g., “Monero”, generic mining API
calls such as CoinHive.Anonymous(), and domain names of the
popular mining pools, e.g., “mine.xmrpool.net”. Such strings are
useful for finding some potential miners, but they are insufficient.

Automatic string pattern search against many diverse apps is
inevitably prone to errors. As we aimed to build a reliable dataset
that could be used as the ground truth for detecting Android miners,
we manually analyzed each app with at least a single match to the
miner-related strings. We were looking for characteristics of the
mining activity and the intended user interactions: (a) the mining
code (e.g., the code that initializes mining and the mining libraries);
(b) how mining can be triggered by a user (by interacting with
an app in a certain way or by simply launching its main activity);
(c) supported cryptocurrencies; (d) the declared functionality of
the app and whether it tries to “hide” its intentions. Additionally,
we searched for more string patterns that can be used to extend
our dataset. Discovering a new pattern, we added it to our set of
miner-related strings, and re-ran the string search against the apps
that had no previous matches and a new batch of apps that we were
downloading.

As a source of potential miners, we used the popular platforms
VirusTotal10 and Koodous11. On VirusTotal, we used the Private
API12 to search and download the apps from our original dataset.
We also collected the app metadata used and compiled a list of
cryptocurrency-related malware families. We used the file search

7The source code is available at https://github.com/pooler/cpuminer
8Our data collection had started before Google decided to remove all mining apps
from Google Play on 07/27/2018.
9http://virustotal.github.io/yara/
10https://www.virustotal.com/
11https://koodous.com/
12https://www.virustotal.com/en/documentation/private-api

functionality13 to download all Android apps that have been de-
tected by at least one antivirus engine and belong to at least one
malware family from our list. Additionally, we downloaded apps
with known miner-related strings (e.g., mining pools and domain
names listed in [14, 18]). Koodous allows to create YARA rulesets,
search for matching Android apps, and download them. We created
our own YARA ruleset for potential Android miners based on the
set of the identified miner-related strings. We also searched for the
YARA rules to detect miners that had been already written by the
community and incorporated them into our ruleset.

Manual analysis. To confirm that an app is a miner we performed
a thorough manual analysis. We decompiled each app with apktool,
matched the set of miner-related strings against the decompiled
files, and examined the app starting from the files where we found
matches. We investigated resource files with extensions .html, .js,
and .xml, native libraries (.so), and executable files shipped with
the app. Once we had located the mining initialization code (e.g., a
JavaScript code fragment that inserts the mining credentials into
a mining library and starts the mining, or a smali code fragment
that calls a native mining library) and/or the mining code (e.g., a
library that implements the mining functionality), we looked for
the entry points in the app that triggered the mining. For example,
we found at least 22 cases when the mining initialization code is
placed directly into the MainActivity class, or located in a subclass
of the Application class – in such cases, the mining starts imme-
diately upon the app startup. In this process, we have identified
and collected other static indicators suggesting that the app under
analysis is a miner. We describe them in Section 5.1.

Using the string patterns and rules, we have downloaded in total
17159 potential mining apps using both VirusTotal and Koodous.
After the manual analysis, we have obtained the dataset of 728
Android miners. During the collection phase, we might have missed
miners, e.g., if they used advanced hiding techniques like dynamic
code updates [35]. Thus, we admit that our dataset may be incom-
prehensive. However, to the best of our knowledge, currently this
is the only publicly available dataset of mobile miners.

4 DATASET DESCRIPTION
JavaScript vs binary miners. Table 1 reports the numbers and

the proportions of JavaScript and binary miners in our dataset,
and the numbers of illicit miners among them. We also identified a
small subset of miner-related apps that are similar to miners, but
do not contain any mining code, and can be points of confusion for
automatic miner detection approaches (we discuss them in more
detail further in this Section). The distribution of apps in Table 1
suggests that the most popular way to create mining apps is with
JavaScript. The majority of the miners in our sample are illicit (614
illicit miners).

Only 39 miners from our sample can be characterized as generic
malware, i.e., integrating traditional malicious behaviors (confirmed
by manual analysis and via VirusTotal). 30 of these miners actively
force users to allow them administrative privileges, and monitor
if they receive the role of the device administrator, and whether
users try to revoke this role.

13https://www.virustotal.com/intelligence/help/file-search/

https://github.com/pooler/cpuminer
http://virustotal.github.io/yara/
https://www.virustotal.com/
https://koodous.com/
https://www.virustotal.com/en/documentation/private-api
https://www.virustotal.com/intelligence/help/file-search/


Category # samples (%)

JavaScript 594 (77.95%)
JavaScript illicit 563 (73.88%)
Binary 134 (17.59%)
Binary illicit 51 (6.69%)
Miner-related 34 (4.46%)

Total 762

Table 1: The distribution of mining apps in our dataset

Android permission Protection level #Miners (%)

INTERNET N (D if API<23) 728 (100.00%)
ACCESS_NETWORK_STATE N 374 (51.37%)
WAKE_LOCK N (D if API<17) 351 (48.21%)
WRITE_EXTERNAL_STORAGE D 300 (41.21%)
RECEIVE_BOOT_COMPLETED N 258 (35.44%)
READ_EXTERNAL_STORAGE D (N if API<23) 203 (27.88%)
c2dm.permission.RECEIVE N 149 (20.47%)
ACCESS_WIFI_STATE N 138 (18.96%)
VIBRATE N 135 (18.54%)
READ_PHONE_STATE D 128 (17.58%)

Table 2: Top 10 Android permissions used byminers (Protec-
tion levels: D - dangerous, N - normal)

4.1 Miner Characteristics
4.1.1 Permissions and monitored system events. Permissions and
system events subscriptions are widely used as features to detect
Android malware [1, 30], and it is interesting to see whether the
miner population uses the same permissions and listens to the
same system events as generic malware. Table 2 lists the top 10
requested Android permissions across our sample of miners. It is
evident that the only permission needed for Android miners to
properly function is the INTERNET. This permission is currently
not considered dangerous, and is granted by the Android system
without user consent [36]. Comparing the statistics in the works of
Wang et al. [33] and Jiang and Zhou [16] that looked into malware-
specific permissions with Table 2, we can conclude that miners
generally do not request permissions that are very prevalent in
malicious samples only, e.g., READ_SMS.

Table 3 lists the top 10most occurring system event subscriptions.
Most of the miners have subscribed to the BOOT_COMPLETED event,
which means that they will attempt to resume their work as soon as
the device has been booted. This system event is highly indicative
of malicious apps [39]. We see also that a significant number of
miners tries to monitor the battery consumption and the network
connection status.

4.1.2 Mining libraries. 8 third-party mining libraries have been
identified in our sample. Table 4 lists these libraries and the number
of apps from our sample that rely on them. In total, these libraries
are used by 671 miners. We could not identify the origin of the
mining code for the remaining 57 miners. This was either due to
the fact that they might be using a custom mining library that we
could not identify (mostly the case for legitimate miners), or the
library has been heavily changed and obfuscated so that we could
not match it to any of the original libraries (mostly the case for
illicit miners).

Android system event #Miners (%)

android.intent.action.BOOT_COMPLETED 536 (73.63%)
android.intent.action.QUICKBOOT_POWERON 169 (22.18%)
android.intent.action.MY_PACKAGE_REPLACED 161 (22.11%)
com.android.vending.INSTALL_REFERRER 159 (21.84%)
com.google.android.c2dm.intent.RECEIVE 146 (20.05%)
com.htc.intent.action.QUICKBOOT_POWERON 122 (16.76%)
android.net.conn.CONNECTIVITY_CHANGE 95 (13.05%)
android.intent.action.ACTION_POWER_DISCONNECTED 84 (11.26%)
android.intent.action.ACTION_POWER_CONNECTED 84 (11.26%)
android.intent.action.BATTERY_LOW 68 ( 8.52%)

Table 3: Top 10 system event subscriptions by miners

Notably, for JavaScript miners, the plain JavaScript CoinHive
API library is not the most used one: 437 miners integrate the
CoinHive Android SDK library, which is a wrapper for convenient
JavaScript-to-Java bindings to the CoinHive API in Android apps.
An example of the CoinHive API usage is shown in Listing 1. We
found that the Authedmine14 API has been used only in 3 cases.
We further identified the usage of several desktop cryptomining
software projects in binary miners: CPUMiner, CGMiner, XMRig,
and MinerD. These projects have been specifically compiled for
Android as libraries/executables by the authors of the miners. We
found on GitHub several versions of CPUMiner and CGMiner used
by the miners.

We observed that in many cases the third-party libraries have
been used “as is”, but in some cases the original library was changed
by the miner authors. For instance, the original CoinHive Android
SDK library has had large modifications in at least 64 illicit miners
from our sample. In all these cases, the changes were non-significant
to the core functionality of the library (perhaps, made only for evad-
ing detection): e.g., package name has been changed, several classes
not related to mining have been removed, variable names have been
changed, etc. For example, in 8 of these cases, the engine.html
file, which is the core of the library, has not been modified (con-
firmed by hashes of the files against the original file provided by the
library). In 56 cases the engine.html file has been renamed into
coinhive.html and modified, yet the original mining functionality
was intact.

Overall, these observations favor the intuition that, given the
small hash rate for smartphone-based mining [27], the malicious
actors would not spend resources on implementing the mining
functionality from scratch, but rather use the libraries that are
already available.

By looking at the used third-party libraries and the code of the
miners from our sample we identified that 586 miners targeted
the Monero cryptocurrency, 5 miners targeted Ethereum, 5 min-
ers targeted Litecoin, and 3 miners had been created to test the
capability of mobile devices for mining Bitcoin. 91 binary miners
in our sample rely on third-party mining libraries that can be used
to mine multiple cryptocurrencies (Monero, Litecoin, Ethereum,
Bitcoin, and others).

4.1.3 Mining campaigns. Similarly to the previous works on in-
browser cryptojacking by Konoth et al. [18] and Hong et al. [14],

14This API has been released by CoinHive as well. Unlike the original mining API, it
requires explicit user consent for mining.



Library Type URL #Apps

CoinHive Android SDK Java https://github.com/theapache64/coin_hive_android_sdk 437
CoinHive API JS https://coinhive.com/lib/coinhive.min.js 139
CPUMiner Binary https://github.com/pooler/cpuminer 42

https://github.com/mdelling/cpuminer-android
MinerD Binary https://github.com/MiniblockchainProject/Minerd 26
CGMiner Binary https://github.com/reorder/cgminer_keccak 17

https://github.com/Max-Coin/cgminer
XMRig Binary https://github.com/xmrig/xmrig 6
Authedmine API JS https://authedmine.com/media/miner.html 3
C0nw0nk JS https://github.com/C0nw0nk/CoinHive 1

UNKNOWN 57

Table 4: Third-party mining libraries used by the miners from our sample

CAMPAIGN COUNT
CAMPAIGN1: 342 miners 342
CAMPAIGN2: 56 miners 56
CAMPAIGN3: 24 miners 24
CAMPAIGNS4-94: 10 miners and less 155

CAMPAIGN1: 342 miners

CAMPAIGN2: 56 miners

CAMPAIGN3: 24 miners

CAMPAIGNS4-94: 10 miners and less

Figure 1: The sizes of mining campaigns

we try to identify the mining campaigns by grouping the sets of
miners that are likely to belong to the same origin, and therefore
may share the profits from the mined cryptocurrency. As most of
the miners from our dataset reuse the same third-party mining
libraries, it is difficult to identify the same origin by looking at
similar code patterns in the apps. Therefore, we assume that two
miners belong to the same campaign only if they share the same
mining credentials used for authentication with the mining services
(e.g., the cryptocurrency wallet id and/or CoinHive site key).

Figure 1 shows the distribution of the sizes of the mining cam-
paigns found within our sample. Overall, we found 94 unique min-
ing campaigns, with the largest campaign enclosing 342 miners,
two smaller campaigns enclosing 56 and 24 miners respectively,
and 91 small campaigns of 10 miners and less. The rest of the apps
are benign miners that did not contain any mining credentials, or
illicit miners for which we could not retrieve these credentials.
Therefore, we could not attribute such miners to a specific mining
campaign.

At this stage, we cannot conclude whether the small mining
campaigns that we found are indeed small in the wild, as this re-
quires further large-scale data collection and analysis. However,
the two relatively large campaigns suggest that in the wild there
may be many Android apps created or, more likely, repackaged by
the same malicious developer that is actively trying to maximize
their mining profit. Indeed, it is relatively inexpensive to repackage
an already existing app [38] and add the mining code. We have seen
many examples that support this conclusion (see Section 5).

Notably, a security researcher has already spotted our largest
mining campaign15. Our dataset contains more apps than it was
originally reported (342 versus 291). Moreover, at least 24 of apps
from our sample that belong to this campaign do not share similar
code (unlike the apps seen by the researcher), suggesting that the
campaign might be even bigger in the wild. In our sample there
are other 64 miners that correspond to 17 mining campaigns, for
which mining credentials have been reported in white papers and
blog posts by other researchers. We have collected 173 miners that
correspond to 76 campaigns that have not been previously reported.
Particularly, the second largest illicit campaign shown on Figure 1
has not been reported before.

4.2 Examples of Mining Applications
The screens in Figures 2a and 2b demonstrate examples of two min-
ing applications. The first app is an illicit miner16. It looks like an
app that was created just for fun and provides very basic function-
ality playing a funny song. However, invisibly it mines the Monero
cryptocurrency in a hidden Web browser. The second example is
a legal miner created specifically for mining Bitcoin on ARM de-
vices17. Users need to configure their own mining credentials and
run the miner. It is a binary miner that exploits a standalone exe-
cutable minerd. Both apps have been previously hosted on Google
Play.

4.3 Miner-related apps.
We have encountered 34 Android apps that we refer to as miner-
related. While these apps do not perform any mining, they are
riddled with keywords, links, and mining credentials relevant to
the real mining apps. Such apps may pose additional challenges
for automated miner detection approaches, and it is therefore im-
portant to consider their presence in the wild. We include these
apps as a separate category in the dataset, because they are valu-
able confusing data points. Below we briefly describe them. More
information about these apps is available in the technical report [9].

12 of these apps have useful functionality: e.g., they either moni-
tor the value of cryptocurrencies, serve as cryptocurrency wallets,
or simply ask for donations in cryptocurrencies (for apps of the
latter case we found a match for a cryptocurrency wallet). These

15https://twitter.com/fs0c131y/status/950082654891802630
16SHA256 a3f376a5c74e1fe112786b4ad450a6b3976226e2164b106653483522adf6bced
17SHA256 727cd092ed478453c2f19d180e1aa8fd22e43dc9cf24772c5ae2ca36cf9dbc4e

https://github.com/theapache64/coin_hive_android_sdk
https://coinhive.com/lib/coinhive.min.js
https://github.com/pooler/cpuminer
https://github.com/mdelling/cpuminer-android
https://github.com/MiniblockchainProject/Minerd
https://github.com/reorder/cgminer_keccak
https://github.com/Max-Coin/cgminer
https://github.com/xmrig/xmrig
https://authedmine.com/media/miner.html
https://github.com/C0nw0nk/CoinHive
https://twitter.com/fs0c131y/status/950082654891802630


(a) Illicit miner (b) Legitimate miner

Figure 2: Screenshots of miner apps

applications can serve as confusion points since various static indi-
cators would suggest the presence of mining code (see Section 5.1).
The rest of 22 miner-related apps are scam. They do not have any
useful functionality, yet claim to be legitimate mining apps. Their
monetization comes from either showing paid ads, or tricking their
users into paying for an “upgraded” version of the app. For example,
the “basic” version may claim that it does not support transferring
the mined funds, until a sufficient amount of a cryptocurrency is
mined. In particular, 2 of these apps employ a trick to improve their
ratings: from the start they promise the user 50,000 Satoshis (0.0005
Bitcoins) “for free” if the user rates the app.

Such apps correspond to another possible source of confusion
for automated detection approaches: while an app claims it is a
cryptocurrency miner and could be immediately considered as a
positive data point (e.g., by classification approaches), it neither con-
tains the mining code, nor manifests the runtime behavior typical
to the mining apps (see Section 5.2).

4.4 VirusTotal Analysis Results
We checked our dataset using the VirusTotal API. We downloaded
the latest, at the time of writing, extended analysis reports for each
app in our dataset. If a report was not found, i.e., a sample had not
been uploaded to VirusTotal before, we submitted the app on our
own. We were the first who found and uploaded at least 5 samples
to VirusTotal18. Among previously seen samples, an app from our
dataset was checked by VirusTotal at the earliest in October 2013,
while the most recent one was uploaded in March, 2019.

All applications from our dataset have been checked by at least
1 out of 77 antivirus products aggregated on the platform. Interest-
ingly, 16 miners from our dataset are not detected by any antivirus

18We have not collected this statistics from the start, therefore, we can confirm only 5
cases.

product. Table 5 reports SHA256 hashes of these miners and ad-
ditional data extracted from VirusTotal reports. 10 out of these
16 apps are legitimate miners, and 6 of them are illicit. The apps
from this table are not new: the oldest dates back to 2013. However,
even the illicit miners among these apps are still not recognized as
malicious or unwanted. For 4 apps this can be explained by the fact
that the mining script is stored in the encrypted form and decrypted
at runtime, and 2 of the undetected apps use obfuscation. Based on
these results, we cannot not draw firm conclusions whether mining
functionality is deemed malicious by the VirusTotal scanners, as
10 legitimate miners are also detected as malware. Our analysis
has not revealed evidence of generic malicious functionality for
legitimate miners.

We aggregated the samples by months when they have been
first spotted on VirusTotal. Figure 3a shows the application submis-
sion timeline based on the VirusTotal data. Our dataset is relatively
new: the majority of apps have been first spotted on VirusTotal in
2018. Second, the figure shows that before the last quarter of 2017
there were few new miner submissions, while in the beginning
of 2018 we observe a huge spike. Before 2017 the interest to the
cryptocurrencies was relatively low. However, in 2017 the price of
cryptocurrencies started to grow exponentially attracting the atten-
tion of criminals. As a result, in the end of 2017 antivirus companies
started to consider Android miners as harmful applications [8, 31].
This indicates that miner developers are profit-driven. They quickly
adopt the techniques that bring revenue and lose interest when the
area is drained, while security companies are mostly reactive.

Figure 3b shows the Cumulative Distribution Function (CDF)
representing the amount of antivirus scanners that detected each
application from our dataset. On average, a sample in our list is
marked as malicious by 22 scanners. Maximum, the miner in our
dataset is detected by 43 different scanners. This shows that even old,
well-known samples are not recognized by all scanners. In Figure 3b,
we can spot three high steps at 3, 10 and 35 detections (63, 57 and
59 new samples correspondingly). These steps could have appeared
because some scanners have similar detection engines, or they
share antivirus databases. Table 6 proves this hypothesis. It shows
that the results of some scanner pairs are either identical or highly
correlated.

We have ranked the VirusToal scanners according to their ability
to detect miners. We assigned +1 point to each true positive and
-1 point to each false negative; if a scanner failed to scan a sample
or VirusTotal does not have the data, we gave 0 points. The final
score is calculated as sum of these points. Table 7 reports the Top
10 VirusTotal scanners based on this score. Note that the rating
is based only on the illicit miners dataset. More details about the
VirusTotal analysis of our dataset are available in the technical
report [9].

5 DETECTING ANDROID MINERS
5.1 Static Indicators
We now describe the heuristics that we identified and used when
performing manual analysis of potential miner apps. These heuris-
tics can be used as static indicators for pinpointing potential An-
droid miners across large amounts of apps.



SHA256 Illicit First seen Last seen Amount of Amount of
date date submissions unique sources

aa200375c8422f3e034b122aa45e59a289b6c356b2301c4651189c27a895d9b0 ✖ 2013-10-13 2015-03-14 4 2
76ae303c82d8233414694ff803c2a22bd82dc1ff1bab1341f9932a238b6b0efc ✖ 2017-07-28 2017-07-28 1 1
f8f936810980d14ab41abb91d4fb0bba32c083e6846623d4320ea45053e8ea6d ✖ 2017-09-27 2017-09-27 1 1
d735cf3732d00ce43d1a36bc77123770d5d611f09d39b8576e3698a9a2ebda87 ✖ 2017-12-01 2017-12-01 1 1
c491cbabb604a59c99e5be0e1808f43e1d21b94be524c4d1c759c8bbbd452509 ✔ 2018-01-09 2018-01-09 1 1
609941fdf62a6f9d186a7714bd4238e0d2c531badd96a69dbb2dce2b4f1d5248 ✖ 2018-02-28 2018-07-18 8 6
be11f2929b4383f1bcf020c8d7d8b4ef0172c5c5a4e468271ebb87f4b14db876 ✖ 2018-03-02 2019-04-24 4 3
c471ca1989d7fc7662ea3ba5bf0bcc79d8790fe4770acaaabd10dafadb7ee362 ✖ 2018-05-03 2018-05-03 2 2
630cf7f1728e8a592aa016171be1f7852f70baaed5267398417f8d91b9d14acb ✖ 2018-05-29 2018-09-08 2 2
f61e31ee2f27f2815e7720cad5920b750d10e01788cd78f7fbd81ba1c31dfeb3 ✔ 2018-07-13 2018-07-13 1 1
7acb35a690d02a34a404cae9ccd3f9b25558e43fd143514c7b42f225aa3663a3 ✖ 2018-08-05 2018-10-13 2 2
17b56ef3a43c6cd4245113ada9a9ff0364754fc6947d05e9f9acb8e6630f9d27 ✖ 2018-08-23 2018-08-23 1 1
2e5ba00cc3caa0a4801f2b0580829cee0577e4b05719e86ea7e5690c961d5dae ✔ 2019-01-30 2019-01-30 1 1
33db4abf2526b4bda22559e41052ea12362c25e96fd0ebd49becd470694e57de ✔ 2019-02-02 2019-04-05 2 2
cb6546a785af3aa2dfee434e25e66ca8691e56909a64e3e317a91fb4e2d5bd1b ✔ 2019-02-10 2019-02-10 1 1
ec8433cd5a06aaafe251361ec304dbc438272a5fef49cf7c5c45a63caecff375 ✔ 2019-03-02 2019-03-02 1 1

Table 5: Samples not detected by the VirusTotal scanners

2014 2015 2016 2017 2018 2019
0

50

100

150

200

250

300

Am
ou

nt
 o

f F
irs

t S
ub

m
iss

io
ns

(a) Date distribution

0 10 20 30 40
Amount of Positive Detections

0

100

200

300

400

500

600

700

Am
ou

nt
 o

f S
am

pl
es

(b) Positive detections CDF

Figure 3: VirusTotal submissions data

5.1.1 Library indicators. As mentioned in Section 4, the vast ma-
jority of our miners use third-party mining libraries, and often
the code of these libraries is used without any changes. Therefore,
detecting these libraries will indicate a potential miner with a high
degree of certainty. For libraries written in JavaScript we took note
of the distinctive code patterns and strings. For libraries written in

Scanner 1 Scanner 2 Correlation

AntiVir Commtouch 1.000
ByteHero 1.000

ByteHero Commtouch 1.000
Agnitum Commtouch 1.000
Commtouch Norman 1.000
ByteHero Norman 1.000
TACHYON nProtect 1.000
Agnitum Norman 1.000

AntiVir 1.000
AntiVir Norman 1.000
Agnitum ByteHero 1.000
AVG Avast 0.997
Kaspersky ZoneAlarm 0.990
BitDefender Emsisoft 0.984

GData 0.927

Table 6: Top 15 highly correlated scanner pairs

Scanner Final True False Failed /
score positives negatives no data

Sophos 514 621 107 0
CAT-QuickHeal 478 603 125 0
DrWeb 474 601 127 0
ESET-NOD32 394 561 167 0
Ikarus 346 512 166 50
Avira 285 505 220 3
McAfee 266 497 231 0
SymantecMobileInsight 256 408 152 168
ZoneAlarm 254 489 235 4
Kaspersky 252 489 237 2

Table 7: Top 10 VirusTotal scanners evaluated on our dataset

Java (e.g., CoinHive Android SDK shown in Table 4) we collected dis-
tinctive components of the library, such as package names, classes,
and smali code patterns. For native libraries and executables we cap-
tured their filename and the SHA256 hash value, as well as specific
string patterns that can be present inside them. For instance, most
of the native mining libraries listed in Table 4 have a distinctive
help menu that lists the available mining parameters and settings.
When we see an unknown binary file that could be a mining li-
brary, we can obtain its hexdump using command line tools such as
xxd and compare string patterns inside the binary file against the



1 public class App extends Application {
2 @Override
3 public void onCreate() {
4 super.onCreate();
5 CoinHive.getInstance()
6 .init("YOUR−SITE−KEY") // mining credentials
7 .setNumberOfThreads(4) // CPU threads
8 .setThrottle(0.2) // CPU throttle
9 }
10 }

Listing 3: CoinHive Android SDK initialization example

string patterns retrieved from known mining libraries. While this
approach cannot beat sophisticated obfuscation techniques, it may
be still helpful to uncover a large set of miners where the library
(or its parts) is used as is. We found that this simple heuristic was
quite powerful, allowing us to find many miners that were difficult
to spot otherwise.

We illustrate our heuristics with the CoinHive Android SDK li-
brary (Table 4). The library implements a convenient Java wrapper
around the CoinHive JavaScript API. Thus, the library can be added
directly to an Android project as a dependency, and a CoinHive
miner instance can be created and launched from within the Java
code, as shown in Listing 3. The CoinHive Java class contains
JavaScript-to-Java bindings to the file called engine.html located
in the resources/ folder of the SDK. This file includes the plain
CoinHive API JavaScript library (Table 4). Therefore, JavaScript min-
ers that rely on this library can be detected by searching for code
patterns specific for the mining library (e.g., the smali code that
corresponds to the miner initialization code shown in Listing 3),
and/or for the code patterns of the engine.html file.

The miner initialization code for Web-based mining services,
such as CoinHive API, is typically inserted into benign HTML/-
JavaScript resources of an app, and is loaded into an Android
WebView UI element through the WebView.loadUrl(...) call –
this is quite similar to how the browser-based mining works in the
Web [18]. In some cases, the JavaScript mining code is stored as a
string constant inside the smali code and is passed directly into a
WebView element.

The authors of binary miners typically place the mining libraries
(e.g., libcpuminer.so) or standalone executables (e.g., the minerd
ELF executable) under the res/raw/ or the assets/ folders of an
app archive. These libraries are invoked either via the Android
System.loadLibrary(...) interface, or by spawning separate ap-
plication processes for executables.

5.1.2 Mining credentials. We also looked for mining credentials
(e.g., cryptocurrency wallet and site key identifiers) passed into
the mining initialization code – the presence of known mining
credentials immediately indicates that they are most likely miners.
In fact, 577 illicit miners from our sample have hardcoded mining
credentials. Therefore, to quickly pinpoint new miners we built a
collection of such identifiers.

We used several heuristics to retrieve the mining credentials.
We observed that many JavaScript and binary miners share similar
miner initialization code patterns. Therefore, after the known third-
party library code has been located, it is easier to identify the code
that initializes the mining and recover the mining credentials (this
can also help when the initialization code is obfuscated to a certain

degree). For example, in case of the CoinHive Android SDK library,
we looked at the values of the parameters passed either to the
CoinHive Java class (Listing 3), or the parameters passed directly
into the engine.html file19.

We used regular expressions based on the patterns of mining
credentials for various cryptocurrencies. As we were looking for
strings like NDMtBC8iLiUkEjUzKC8mYSQzMy4zYXxh, we computed
the Shannon Entropy metric [19] for strings and only kept the
strings for which this metric exceeded a certain threshold (we
empirically selected the value of 4.33). We checked the retrieved
mining credentials and added them to our string search.

5.1.3 Mining domains and keywords. To search through the apps
for which we could not find known mining credentials or code pat-
terns, we used potential mining domains20 and simple keywords
such as miner, bitcoin, stratum, monero, hashrate, etc. While
the keyword search allows to find new previously unseen miners,
using it alone is prone to large amounts of false-positives. For exam-
ple, many non-miner apps that we encountered contain an adblock
functionality that actively tries to block known cryptocurrency
mining domains (and thus, there will be a match to the known
miner domain list).

5.1.4 Evasion techniques. We observed that some illicit miners
applied evasion techniques. The code fragments that initialize the
mining process and contain the mining credentials may be not
shipped with the miner app itself, or this code could be encrypted
within an app to be decrypted at runtime.

For example, we encountered cases when an illicit miner loads
the mining credentials from a remote server upon the startup. The
download link is present within the code of the miner, but it has
been obfuscated. However, when we launched the app in the An-
droid emulator, the logcat utility allowed us to see which link the
app is trying to connect to, and that it downloads a JSON file. The
file21 contains the mining credentials. We provide an excerpt of this
configuration file in Listing 4. In this Listing, we can see the settings
for the mining script, including the (shortened) wallet address, the
preferred mining pool, and some configurations that allow to start
mining when the device is charging and not charging. By exam-
ining the public GitHub repository22 where the link is hosted, we
found several other files that had similar structure but different
mining wallets. We added these wallets to our miner-related strings,
however we have not found any apps that use them yet. This could
be due to some other ways of hiding the mining payload that we are
not yet aware of, or possibly the owner of this repository is creating
illicit cryptocurrency miners for other application platforms.

We observed another approach for hiding credentials. The appli-
cation resources contain an .html resource file with a link to the
CoinHive mining script, yet, there seem to be no code that initializes
the mining process. Upon closer inspection of other links embedded
into the html pages, we identified a set of links to JavaScript code
located at suspicious websites. Several of these links contained the

19E.g., file:///android_asset/engine.html?site_key=....
20We compiled a large list of known mining domains from various sources such as
https://github.com/hoshsadiq/adblock-nocoin-list/blob/master/nocoin.txt.
21The link is still available at the time of writing: https://raw.githubusercontent.com/
cryptominesetting/setting/master/setting.txt
22https://github.com/cryptominesetting/setting

file:///android_asset/engine.html?site_key=...
https://github.com/hoshsadiq/adblock-nocoin-list/blob/master/nocoin.txt
https://raw.githubusercontent.com/cryptominesetting/setting/master/setting.txt
https://raw.githubusercontent.com/cryptominesetting/setting/master/setting.txt
https://github.com/cryptominesetting/setting


1 {
2 "chEnable":true,
3 "maEnable":false,
4 "alternativeMine":false,
5 "secondaryAlternativeMine":false,
6 "chargingOn":true,
7 "chargingOff":true,
8 "screenOff":true,
9 "screenOn":true,
10
11 "ma":0.8,
12 "ch":0.7,
13
14 "alternativeLink":"http://crymore.ga",
15 "secondaryAlternativeLink":"",
16
17 "nativeMinerPool":"pool.supportxmr.com:3333",
18 "wallet":"44V8ww9soyFfrivJDfcgmT2gXCFPQDyLFXyS7mEo2xT[...]",
19 "nativeMinerThread":1,

Listing 4: Illicit miner configuration served online

1 var miner = new CoinHive.Anonymous('...');
2 miner.start();

Listing 5: Remote CoinHive initialization script example

initialization code (shown in Listing 5). Therefore, for improving
static Android miner detection, it is important to inspect remote
resources.

The majority of scam miners in our dataset are obfuscated, prob-
ably, to hinder inspection and to make repackaging more difficult.
Thus, it is necessary to perform runtime mining detection, not only
in the cases, when the mining code is not shipped within the An-
droid app and/or is heavily obfuscated, but also to identify scam
miners that do not mine.

5.2 Dynamic Detection
We developed an approach and a prototype called BrenntDroid
that leverage machine learning for detecting Android miners using
dynamic features. To build this prototype, we selected a sample
consisting of 200 Android applications: 100 miners and 100 benign
apps. For the miners class, we selected 100 apks from our dataset
that start the mining process immediately after they have launched.
This is a valid assumption because our tool is supposed to constantly
monitor the device and, thus, can detect the moment when an app
starts mining, while dormant miners do not cause damage for the
user. For the benign class, we randomly selected 100 apps from the
local Google Play store among the “Trending”, “Top Apps”, and “Top
Grossing” groups. These apps include various categories such as
“Gaming”, “Education”, “Sports” and “Shopping”, and their numbers
of downloads range from 100 to more than 500M.

For each of these apps, we collected a set of dynamic parameter
values generated by the corresponding application using the Snap-
dragon Profiler [24]. We exercised each app from our dataset for
300 seconds on LG Nexus 5 powered by Snapdragon 800 running
the Lineage OS 14.1 operating system (based on Android 7.1), and
collected data about the low-level system events.

5.2.1 Features. For each application, we collected 15 different met-
rics: 1) Battery Current; 2) Battery Power; 3) CPU Branch Misses;
4) CPU Clock; 5) CPU Context Switches; 6) CPU Cycles; 7) CPU
Cycles/Instruction; 8) CPU Instructions; 9) CPU Page Faults; 10)

CPU Task Clock; 11) CPU Utilization Percent; 12) Memory Usage;
13) Rx Bytes (Total); 14) Tx Bytes (Total); and 15) Temperature.

For each of the metric timeseries, we calculated 10 simple sta-
tistical values: 1) Minimum (Min); 2) Maximum (Max); 3) Average
(Mean); 4) Median (Median); 5) Unbiased kurtosis (Kurt); 6) Unbi-
ased skew (Skew); 7) Unbiased standard error of the mean (Sem);
8) Standard deviation (Std); 9) Mean absolute deviation (Mad); 10)
Coefficient of variation (CV).

We used filtering techniques that perform cleaning based only
on the internal properties of the dataset, without considering our
application classes. We applied two feature selection techniques
to eliminate excessive variables. First, we removed the features
that have low variance in our dataset (threshold=0.1) using the
scikit-learn library [23]. Second, we eliminated highly correlated
features (Pearson correlation coefficient is more than 0.9). After
these procedures, only 67 features remained (see Figure 4 for the
list).

To detect the strongest features in our dataset, we exploited the
internal property of tree-based algorithms that calculate feature
importances as a part of their training procedure. We trained a
Random Forest classifier [23] on our dataset. Figure 4 lists the
extracted features and shows their importance.

According to our analysis, two most important features are Max-
imum CPU Utilization % and Average Battery Power. The corre-
sponding Kernel Density Estimation (KDE) plots are shown in
Figures 5a and 5b. In Figure 5a, we can spot a huge spike around
100% for miners. This confirms that miners try to utilize all CPU
resources on the device. At the same time, we also see some spikes
around 30% tick. Thus, some miners in our dataset throttled their
mining capability, or used a subset of all available CPU cores. In
general, miners’ CPU utilization gravitates to discrete values. At the
same time, the Maximum CPU Utilization % KDE for benign appli-
cations is almost uniformly distributed along the X axis. The more
intensive tasks a processor executes, the more power it requires.
During this experiment, the phone was attached to a computer
through a USB cable. Thus, as a side-effect during the dataset col-
lection the phone was also charging. Figure 5b shows that when
a benign application was executed the phone was charging (the
extremum value is on the positive side), while the miners were
consuming so much energy that the battery was draining, even
though the phone was attached to a power supply.

5.2.2 Detection results. We evaluated our model using the 10-fold
stratified cross-validation with all selected features (see Figure 6
for the Receiver Operating Characteristic (ROC) curve). In our
experiment, we achieved 95% of accuracy with the Area Under
Curve (AUC) score equal to 0.988±0.009. Our model proves that
it is possible to build a very accurate runtime detection tool. At
the same time, we admit that collection of dynamic features is
connected with large power consumption overhead. This means
that implementation of BrenntDroid to run on a user device could
be impractical. Moreover, the obtained machine learning model is
valid in our testbed and may not transferable to other devices. Still,
the developed approach could be applied as one of the tests during
the application vetting process at an app store like Google Play [37].



CP
U 

Ut
iliz

at
io

n 
%

 M
ax

Ba
tte

ry
 P

ow
er

 M
ea

n
CP

U 
Cy

cle
s C

V
CP

U 
In

st
ru

ct
io

ns
 C

V
CP

U 
Cy

cle
s/

In
st

ru
ct

io
n 

M
ax

Te
m

pe
ra

tu
re

 S
ke

w
CP

U 
In

st
ru

ct
io

ns
 M

ax
CP

U 
Cy

cle
s/

In
st

ru
ct

io
n 

M
ad

CP
U 

Ut
iliz

at
io

n 
%

 M
ad

CP
U 

Ut
iliz

at
io

n 
%

 M
in

Te
m

pe
ra

tu
re

 M
ad

CP
U 

Cy
cle

s/
In

st
ru

ct
io

n 
M

ed
ia

n
Ba

tte
ry

 C
ur

re
nt

 C
V

CP
U 

Br
an

ch
 M

iss
es

 M
ea

n
CP

U 
Br

an
ch

 M
iss

es
 C

V
CP

U 
Cy

cle
s/

In
st

ru
ct

io
n 

M
in

CP
U 

Co
nt

ex
t S

wi
tc

he
s M

ax
M

em
or

y 
Us

ag
e 

M
in

CP
U 

Cy
cle

s M
ea

n
M

em
or

y 
Us

ag
e 

M
ax

CP
U 

Cy
cle

s/
In

st
ru

ct
io

n 
M

ea
n

CP
U 

Cl
oc

k 
M

ea
n

Ba
tte

ry
 C

ur
re

nt
 K

ur
t

Te
m

pe
ra

tu
re

 K
ur

t
CP

U 
Co

nt
ex

t S
wi

tc
he

s M
ea

n
Ba

tte
ry

 P
ow

er
 M

ax
Ba

tte
ry

 C
ur

re
nt

 S
ke

w
CP

U 
In

st
ru

ct
io

ns
 M

ad
CP

U 
Cl

oc
k 

M
in

Tx
 B

yt
es

 (T
ot

al
) C

V
Rx

 B
yt

es
 (T

ot
al

) M
ax

Tx
 B

yt
es

 (T
ot

al
) M

ad
Rx

 B
yt

es
 (T

ot
al

) K
ur

t
CP

U 
In

st
ru

ct
io

ns
 S

em
CP

U 
Cy

cle
s M

ad
CP

U 
Co

nt
ex

t S
wi

tc
he

s M
ad

CP
U 

Pa
ge

 F
au

lts
 C

V
CP

U 
Pa

ge
 F

au
lts

 S
td

CP
U 

Cl
oc

k 
M

ad
Rx

 B
yt

es
 (T

ot
al

) C
V

CP
U 

Pa
ge

 F
au

lts
 M

ad
CP

U 
Co

nt
ex

t S
wi

tc
he

s K
ur

t
Rx

 B
yt

es
 (T

ot
al

) M
ad

Te
m

pe
ra

tu
re

 M
in

M
em

or
y 

Us
ag

e 
M

ad
CP

U 
Cy

cle
s M

ax
CP

U 
Cl

oc
k 

Se
m

CP
U 

Cy
cle

s K
ur

t
CP

U 
Pa

ge
 F

au
lts

 M
ax

CP
U 

Ta
sk

 C
lo

ck
 K

ur
t

CP
U 

Cl
oc

k 
M

ax
CP

U 
Cy

cle
s/

In
st

ru
ct

io
n 

Ku
rt

CP
U 

In
st

ru
ct

io
ns

 K
ur

t
Tx

 B
yt

es
 (T

ot
al

) M
ax

Ba
tte

ry
 C

ur
re

nt
 M

in
CP

U 
Co

nt
ex

t S
wi

tc
he

s M
in

CP
U 

Pa
ge

 F
au

lts
 K

ur
t

CP
U 

Br
an

ch
 M

iss
es

 K
ur

t
CP

U 
Cl

oc
k 

Ku
rt

CP
U 

Br
an

ch
 M

iss
es

 M
ax

M
em

or
y 

Us
ag

e 
Ku

rt
M

em
or

y 
Us

ag
e 

Sk
ew

CP
U 

Ta
sk

 C
lo

ck
 M

ax
CP

U 
Ta

sk
 C

lo
ck

 M
in

CP
U 

Br
an

ch
 M

iss
es

 S
em

CP
U 

Pa
ge

 F
au

lts
 M

in
CP

U 
Br

an
ch

 M
iss

es
 M

ad

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fe
at

ur
e 

Im
po

rta
nc

e

Figure 4: Feature importance

20 0 20 40 60 80 100 120
CPU Utilization % Max

0.0

0.5

1.0

1.5

2.0

2.5
Miners
Benign

(a) Maximum CPU Utilization % KDE

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
Battery Power Mean

0.0

0.5

1.0

1.5

2.0

2.5
Miners
Benign

(b) Battery Power Average KDE

Figure 5: Two most important dynamic features

5.3 Discussion
We have shared our approaches to identify mining code, our set of
static miner indicators, and we have presented a technique based
on dynamic performance-related features for detecting mining apps
on Android. These approaches have certain limitations.

Static indicators we collected are relevant to our dataset, and
new generations of cryptojacking malware apps will likely include

different tokens. Moreover, cryptomining libraries evolve or die,
and new cryptocurrencies and novel mining algorithms emerge
constantly. Yet, our ideas focus on the Android platform specifics
that will not changewith the cryptomining evolution. It is likely that
CPU mining on Android will continue to exist in the JavaScript and
the binary flavors.We have also seen evidence that the lowmarginal
profit from mobile mining drives the attackers to implement the
most straightforward and easy solutions. Thus, our suggestions on



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Mean ROC (AUC = 0.988 ± 0.009)
± 1 std. dev.

Figure 6: ROC curve

manual miner analysis and static indicator collection will likely be
valid for some time in the future.

Our dynamic detection approach is based on CPU performance
profiling.We have demonstrated its practical viability on our dataset.
As cryptomining libraries may and will change in the future, our
machine learning-based approach will require retraining. How-
ever, our approach itself will be relevant, until the underlying core
idea of cryptomining, which involves solving computationally hard
puzzles quickly (proof-of-work), will change to other consensus
mechanisms.

Our dataset shared with the community contains many apps that
rely on the CoinHive library for mining (note that many different
mining libraries are also present in our dataset). While CoinHive
was shut down in 2019, Monero miners are still a threat23. Moreover,
at the time of writing, CoinHive is still the dominant browser-based
cryptomining library24. Therefore, it is important to be able to
detect apps with this library, and our results and the apps with this
library are still relevant for the community.

6 RELATEDWORK
To the best of our knowledge, ours is the first work reporting on
Android cryptomining applications. Previously, cryptojacking has
been investigated in the context of traditional binary malware
[15, 22], and there have been several papers focusing on browser-
based cryptojacking [12, 18, 20, 25–27, 32].

Browser-based cryptojacking. Eskandari et al. [12] applied keyword-
based search to the website code, and have reported finding more
than 30K occurrences of the CoinHive library and some occur-
rences of its alternatives, such as CryptoLoot and JSECoin. Konoth
et al. [18] have found 20 active crypto-mining campaigns and 28
crypto-mining services in Alexa’s Top 1 Million websites. They
have used keyword-based search in web traffic logs, followed by
manual analysis. Similarly, Musch et al. [20] have applied CPU
usage profiling and presence of web assembly code and several
WebWorkers as cryptojacking indicators. Hong et al. [14] have
proposed a run-time mining detection tool CMTracker integrating
hash computation-based and stack structure-based profilers.

23https://www.bbc.com/news/world-europe-49494927
24https://cryptobriefing.com/is-web-mining-still-a-thing/

Saad et al. [27] used public services to acquire a list of websites
with mining code embedded. Using these sites as the ground truth,
they have developed dynamic mining script profiles with respect
to CPU usage, battery drain and network usage. Machine learning-
based approach to browser-based miner detection has also been
outlined in Carlin et al. [3], where opcode traces have been used as
features, and in Draghicescu et al. [10], where the CPU allocation
features and the threads and socket connections have been captured.

Binary-based cryptojacking.Malicious Bitcoin cryptominers have
been investigated by Huang et al. [15] already in 2014. Division
into campaigns and profits generated by recent binary-based cryp-
tominers have been analysed by Pastrana and Suarez-Tangil [22].
The data collection approach used in [22] is similar to ours, as the
authors crawled public services for malicious samples and then
applied static and dynamic analysis heuristics to select only miners.

In contrast to the aforementioned works, ours focuses on mining
apps in the Android ecosystem. Our results show that the Android
platform is plagued by both Web-based and binary cryptojackers.
We collected and analyzed not only malicious cryptominers, as
in [22], but also bona fide miners. We have also reported about
the phenomenon of scam miners that only pretend to be mining
cryptocurrencies, while, at best, only serving ads to the users.

Dynamic mining detection Recently, Clay et al. [5] have evaluated
the CPU consumption required for mining on Android devices. As
mentioned, Saad, Khormali and Mohaisen [27] reported on using
CPU usage and battery level on several devices, including an An-
droid phone, to discriminate mining web scripts from non-mining
ones (that were emulated with JavaScript disabled in the browser).

Our dynamic detection approach relies on evaluation of many
dynamically profiled features of Android applications, including
CPU usage and battery drain caused by computation-intensive
mining code. In contrast to [3, 27], our solution for dynamic miner
detection is based on comparison of mining apps with benign but
fully functional ones.

A generic, platform-agnostic approach to covert cryptomining
detection based on hardware performance counters profiles and
machine learning techniques has been proposed by Conti et al. [7].
This work addresses creating generic mining profiles composed
of processor’s events that are common to the majority of crypto-
mining algorithms. Our approach uses another set of features for
the dynamic detection task. It would be interesting to investigate
comparative advantages of each feature sets in an implementation
tailored to a mobile platform.

Android malware detection. As our analysis of VirusTotal results
and security industry reports show [11], mining functionality can be
delivered as a part of malicious payload. There exist a large body of
work that focuses on Android malware detection, e.g., [1, 16, 30, 33,
34, 39], to name just a few. Several approaches for detecting Android
malware based on energy consumption fingerprints have been
proposed and evaluated, e.g., [2, 4, 13]. Yet, these works focused on
detection of malware behaviors other than mining.

7 CONCLUSIONS
Cryptojacking poses a serious threat to mobile devices. In order to
better comprehend this threat, we collected a dataset of 728 An-
droid mining apps and dissected them. To the best of our knowledge,

https://www.bbc.com/news/world-europe-49494927
https://cryptobriefing.com/is-web-mining-still-a-thing/


this is the first work that looks into cryptojacking applications on
Android. Our analysis confirms that the public knowledge in this
area is largely insufficient. For example, we found 173 illicit miners
from 76 mining campaigns that have been not previously reported.
With the clean dataset available, we executed a set of miners and
compared the results with benign applications. We identified a set
of dynamic features that contribute the most to accurate classifica-
tion. Based on our dataset, we achieved 95% of accuracy with the
AUC score of 0.988±0.009. Our prototype called BrenntDroid can
be used to detect miners at runtime.

In the future, we will study illicit cryptominers that use heavy
code obfuscation. We also plan to extend BrenntDroid with tech-
niques for detecting static and dynamic evasion methods, such as
CPU throttling.

Acknowledgements. This researchwas supported by Luxembourg
National Research Fund through grants C15/IS/10404933/COMMA
and AFR-PhD-11289380-DroidMod.

REFERENCES
[1] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad

Rieck. 2014. DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket. In Proceedings of the Network and Distributed System Security
Symposium. 23–26.

[2] Gerardo Canfora, Eric Medvet, Francesco Mercaldo, and Corrado Aaron Visaggio.
2016. Acquiring and Analyzing App Metrics for Effective Mobile Malware Detec-
tion. In Proceedings of the ACM International Workshop on Security And Privacy
Analytics. 50–57.

[3] Domhnall Carlin, Philip O’Kane, Sakir Sezer, and Jonah Burgess. 2018. Detecting
Cryptomining Using Dynamic Analysis. In Proceedings of the Annual Conference
on Privacy, Security and Trust. 1–6.

[4] Luca Caviglione, Mauro Gaggero, Jean-François Lalande, Wojciech Mazurczyk,
and Marcin Urbański. 2016. Seeing the Unseen: Revealing Mobile Malware
Hidden Communications via Energy Consumption and Artificial Intelligence.
IEEE Transactions on Information Forensics and Security 11, 4 (2016), 799–810.

[5] James Clay, Alexander Hargrave, and Ramalingam Sridhar. 2018. A Power Anal-
ysis of Cryptocurrency Mining: A Mobile Device Perspective. In Proceedings of
the Annual Conference on Privacy, Security and Trust. 1–5.

[6] Coinhive. 2019. Discontinuation of Coinhive. https://coinhive.com/blog/en/
discontinuation-of-coinhive

[7] Mauro Conti, Ankit Gangwal, Gianluca Lain, and Samuele Giuliano Piazzetta.
2019. Detecting Covert Cryptomining using HPC. arXiv:1909.00268

[8] Cyber Threat Alliance. 2018. The Illicit Cryptocurrency Mining Threat.
https://www.cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-
CryptoMining-Whitepaper.pdf

[9] Stanislav Dashevskyi, Yury Zhauniarovich, Olga Gadyatskaya, Aleksandr Pilgun,
and Hamza Ouhssain. 2019. Dissecting Android Cryptocurrency Miners. (2019).
arXiv:1905.02602

[10] Dragos Draghicescu, Alexandru Caranica, Alexandru Vulpe, and Octavian Fratu.
2018. Crypto-Mining Application Fingerprinting Method. In Proceedings of the
International Conference on Communications. 543–546.

[11] Randi Eitzman, Kimberly Goody, Bryon Wolcott, and Jeremy Kennelly. 2018.
How the Rise of Cryptocurrencies Is Shaping the Cyber Crime Landscape: The
Growth of Miners. https://www.fireeye.com/blog/threat-research/2018/07/
cryptocurrencies-cyber-crime-growth-of-miners.html

[12] Shayan Eskandari, Andreas Leoutsarakos, Troy Mursch, and Jeremy Clark. 2018.
A First Look at Browser-based Cryptojacking. arXiv:1803.02887

[13] Xing Gao, Dachuan Liu, Daiping Liu, and Haining Wang. 2016. On Energy
Security of Smartphones. In Proceedings of the ACM Conference on Data and
Application Security and Privacy. 148–150.

[14] Geng Hong, Zhemin Yang, Sen Yang, Lei Zhang, Yuhong Nan, Zhibo Zhang, Min
Yang, Yuan Zhang, Zhiyun Qian, and Haixin Duan. 2018. How You Get Shot
in the Back: A Systematical Study about Cryptojacking in the Real World. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security. 1701–1713.

[15] Danny Yuxing Huang, Hitesh Dharmdasani, Sarah Meiklejohn, Vacha Dave,
Chris Grier, Damon McCoy, Stefan Savage, Nicholas Weaver, Alex C Snoeren,
and Kirill Levchenko. 2014. Botcoin: Monetizing Stolen Cycles. In Proceedings of
the Network and Distributed System Security Symposium.

[16] Xuxian Jiang and Yajin Zhou. 2012. Dissecting Android Malware: Character-
ization and Evolution. In Proceedings of the IEEE Symposium on Security and

Privacy.
[17] Kaspersky. 2017. Loapi – This Trojan is Hot! https://www.kaspersky.com/blog/

loapi-trojan/20510/
[18] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina

Lindorfer, Christopher Kruegel, Herbert Bos, and Giovanni Vigna. 2018.
MineSweeper: An In-depth Look into Drive-by Cryptocurrency Mining and
Its Defense. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security. 1714–1730.

[19] Wanli Ma, John Campbell, Dat Tran, and Dale Kleeman. 2010. Password Entropy
and Password Quality. In Proceedings of the International Conference on Network
and System Security.

[20] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. 2018.
Web-based Cryptojacking in the Wild. (2018). arXiv:1808.09474

[21] Panagiotis Papadopoulos, Panagiotis Ilia, and Evangelos P. Markatos. 2018. Truth
in Web Mining: Measuring the Profitability and Cost of Cryptominers as a Web
Monetization Model. (2018). arXiv:1806.01994

[22] Sergio Pastrana and Guillermo Suarez-Tangil. 2019. A First Look at the Crypto-
Mining Malware Ecosystem: A Decade of Unrestricted Wealth. In Proceedings of
the Internet Measurement Conference. 73–86.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[24] Qualcomm Technologies, Inc. 2019. Snapdragon Profiler. https://developer.
qualcomm.com/software/snapdragon-profiler

[25] Julian Rauchberger, Sebastian Schrittwieser, Tobias Dam, Robert Luh, Damjan
Buhov, Gerhard Pötzelsberger, and Hyoungshick Kim. 2018. The Other Side of
the Coin: A Framework for Detecting and Analyzing Web-Based Cryptocurrency
Mining Campaigns. In Proceedings of the International Conference on Availability,
Reliability and Security. Article 18.

[26] Jan Rüth, Torsten Zimmermann, Konrad Wolsing, and Oliver Hohlfeld. 2018.
Digging into Browser-based Crypto Mining. In Proceedings of the Internet Mea-
surement Conference.

[27] Muhammad Saad, Aminollah Khormali, and Aziz Mohaisen. 2018. End-to-End
Analysis of In-Browser Cryptojacking. (2018). arXiv:1809.02152

[28] Aleieldin Salem, F. Franziska Paulus, and Alexander Pretschner. 2018. Repack-
man: A Tool for Automatic Repackaging of Android Apps. In Proceedings of the
International Workshop on Advances in Mobile App Analysis. 25–28.

[29] Sophos Labs. 2018. CoinMiner and Other Malicious Cryptominers Targeting
Android. https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/
sophos-coinminer-and-other-malicious-cryptominers-tpna.pdf

[30] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The Evolution of Android Malware and Android Analysis Techniques.
Comput. Surveys 49, 4 (Jan. 2017).

[31] Liam Tung. 2017. Android Security: Coin Miners Show up in Apps and Sites
to Wear out your CPU. https://www.zdnet.com/article/android-security-coin-
miners-show-up-in-apps-and-sites-to-wear-out-your-cpu/

[32] Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W Hamlen, and Shuang
Hao. 2018. SEISMIC: SEcure In-lined Script Monitors for Interrupting Cryptojacks.
In Proceedings of the European Symposium on Research in Computer Security. 122–
142.

[33] Wei Wang, Xing Wang, Dawei Feng, Jiqiang Liu, Zhen Han, and Xiangliang
Zhang. 2014. Exploring Permission-induced Risk in Android Applications for
Malicious Application Detection. IEEE Transactions on Information Forensics and
Security 9, 11 (2014), 1869–1882.

[34] Lifan Xu, Dongping Zhang, Nuwan Jayasena, and John Cavazos. 2016. HADM:
Hybrid Analysis for Detection of Malware. In Proceedings of the SAI Intelligent
Systems Conference.

[35] Yury Zhauniarovich, Maqsood Ahmad, Olga Gadyatskaya, Bruno Crispo, and
Fabio Massacci. 2015. StaDynA: Addressing the Problem of Dynamic Code
Updates in the Security Analysis of Android Applications. In Proceedings of the
ACM Conference on Data and Application Security and Privacy. 37–48.

[36] Yury Zhauniarovich and Olga Gadyatskaya. 2016. Small Changes, Big Changes:
An Updated View on the Android Permission System. In Proceedings of the
International Symposium on Research in Attacks, Intrusions, and Defenses. 346–
367.

[37] Yury Zhauniarovich, Olga Gadyatskaya, and BrunoCrispo. 2013. DEMO: Enabling
Trusted Stores for Android. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. 1345–1348.

[38] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco La Spina, and
Ermanno Moser. 2014. FSquaDRA: Fast Detection of Repackaged Applications.
In Proceedings of the IFIP Annual Conference on Data and Applications Security
and Privacy. 130–145.

[39] Ziyun Zhu and Tudor Dumitraundefined. 2016. FeatureSmith: Automatically
Engineering Features for Malware Detection by Mining the Security Literature.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security. 767–778.

https://coinhive.com/blog/en/discontinuation-of-coinhive
https://coinhive.com/blog/en/discontinuation-of-coinhive
http://arxiv.org/abs/1909.00268
https://www.cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf
https://www.cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-Whitepaper.pdf
http://arxiv.org/abs/1905.02602
https://www.fireeye.com/blog/threat-research/2018/07/cryptocurrencies-cyber-crime-growth-of-miners.html
https://www.fireeye.com/blog/threat-research/2018/07/cryptocurrencies-cyber-crime-growth-of-miners.html
http://arxiv.org/abs/1803.02887
https://www.kaspersky.com/blog/loapi-trojan/20510/
https://www.kaspersky.com/blog/loapi-trojan/20510/
http://arxiv.org/abs/1808.09474
http://arxiv.org/abs/1806.01994
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
http://arxiv.org/abs/1809.02152
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophos-coinminer-and-other-malicious-cryptominers-tpna.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophos-coinminer-and-other-malicious-cryptominers-tpna.pdf
https://www.zdnet.com/article/android-security-coin-miners-show-up-in-apps-and-sites-to-wear-out-your-cpu/
https://www.zdnet.com/article/android-security-coin-miners-show-up-in-apps-and-sites-to-wear-out-your-cpu/

	Abstract
	1 Introduction
	2 Android Cryptocurrency Mining
	3 Dataset Collection
	4 Dataset Description
	4.1 Miner Characteristics
	4.2 Examples of Mining Applications
	4.3 Miner-related apps.
	4.4 VirusTotal Analysis Results

	5 Detecting Android Miners
	5.1 Static Indicators
	5.2 Dynamic Detection
	5.3 Discussion

	6 Related Work
	7 Conclusions
	References

