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Abstract—Dynamic code update techniques [2], such as dy-
namic class loading and reflection, enable Android apps to extend
their functionality at runtime. At the same time, these techniques
are misused by malware developers to transform a seemingly
benign app into a malware, once installed on a real device.
Among the corpus of evasive techniques used in modern real-
world malware, evasive usage of dynamic code updates plays a
key role.

First, we demonstrate the ineffectiveness of existing tools to
analyze apps in the presence of dynamic code updates using
our test apps, i.e., Reflection-Bench and InboxArchiver. Second,
we present StaDART, combining static and dynamic analysis
of Android apps to reveal the concealed behavior of malware.
StaDART performs dynamic code interposition using a vtable
tampering technique for API hooking to avoid modifications to
the Android framework. Furthermore, we integrate it with a
triggering solution, DroidBot, to make it more scalable and fully
automated. We present our evaluation results with a dataset of
2,000 real world apps; containing 1,000 legitimate apps and 1,000
malware samples. The evaluation results with this dataset and
Reflection-Bench show that StaDART reveals suspicious behavior
that is otherwise hidden to static analysis tools.

Index Terms—Android, Dynamic Code Updates, Reflection,
Dynamic Class Loading, Security Analysis.

I. INTRODUCTION

DYNAMIC code update is a software engineering feature
inherited by the Android framework from Java. Theo-

retically, it enables app developers to update the code base of
their apps and completely transform them after being installed
on user devices. This feature plays a vital role in maintaining
the life cycle of highly feature-rich and evolving Android
apps. However, it also possesses the risk of being misused
by adversaries to update an app’s code base with malicious
functionality. Ensuring smartphone users’ privacy and security
is a major concern and requires adequate measures from app
developers, framework providers, and app stores, etc. Google’s
open source operating system, Android, being the most pop-
ular platform for mobile devices, uses Google Bouncer as an
app vetting process at its official Google Play store. Vetting
processes generally use some form of static/dynamic analysis
to scrutinize apps for malicious content and Google Bouncer
is no different. In addition, starting from Android 7.0, Android
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introduced Verify Apps, a new security feature to analyze apps
downloaded from sources other than the Google Play store.

However, a growing number of malware samples found in
the Android ecosystem reveals that malware developers bypass
such vetting processes using various evasion techniques. Pre-
vious research shows that the use of dynamic code update
techniques along with various forms of obfuscation makes
it extremely hard for the state-of-the-art analysis tools to
understand the behavior of an app [10], [31], [37]. Thus, the
use of these evasion techniques in newly found malware is
not surprising [14], [32]. This paper provides an empirical
demonstration of the lack of effectiveness of the state-of-the-
art tools when it comes to analysing apps that hide suspicious
behavior, that is code running with special privileges, using
reflection and dynamic code loading. We develop a set of
benchmark apps that use reflection in different ways to conceal
information leakage. Our analysis of reflection-bench using
some of the state-of-the-art static analysis tools shows their
ineffectiveness to handle apps that use reflection. Furthermore,
we develop InboxArchiver, a seemingly benign app that uses
dynamic code loading to hide its suspicious functionality, and
use it to test some of the most well known online analysis
services. The analysis show that InboxArchiver easily bypasses
these security analysis services.

Static analysis relies on the availability of all the information
at analysis time, hence, it suffers from dynamic features and
unavailability of information that are known only at execution
time, e.g., the parameters used in the dynamic code update
APIs. Therefore, reflection that is a programming technique
widely used by mobile app developers can be only partially
investigated by current static analysis tools. As a result, reflec-
tion is usually used by malware developers to hide malicious
code. The inherent limitation of all static analyzers (e.g., [12],
[26]) is the operational assumption that the code base does not
change dynamically and the targets of reflection calls can be
discovered in advance. This is a clear simplification of what
happens in the real world, where many apps rely on code base
updates instantiated only at runtime.

There exist approaches that enhanced static analyzers of
Java code to deal with the presence of dynamic code up-
date techniques (e.g., [17]). However, they cannot be applied
directly to Android due to the differences in the Java and
Android platforms. The alternative of instrumenting the app
offline has the major drawback of breaking the app signature,
that some apps check at runtime. As the app starts, it checks



the integrity of the signature against a value hardcoded in the
app and terminates if the check fails. In case of malicious apps
this check may be used to conceal illicit behavior.

In this paper, we present StaDART, a mobile app security
analysis tool that combines static and dynamic analysis to
address the presence of dynamic code updates. Instead of
relying on modifications to the Android framework, StaDART
utilizes a vtable tampering technique for API hooking to per-
form dynamic instrumentation [20]. Furthermore, we integrate
StaDART with DroidBot, a triggering tool for Android apps,
to make the analysis fully automated. StaDART is evaluated
using a dataset of 2,000 real world apps (both malicious and
benign) and the results of our evaluation reveal that it is more
common in malicious apps to use dynamic code updates to
conceal malicious behavior which is only exhibited once the
app is installed on a real device. Moreover, 33% of malware
samples that use DCL introduce APIs guarded with new (not
used in the initial code base) dangerous permissions in the
newly loaded code, whereas the analysed benign apps do not
exhibit such behavior.

Contributions:
• We present the design and implementation of StaDART,

a system that interleaves static and dynamic analysis in
order to reveal the hidden/updated behavior of Android
apps. StaDART analyzes the code loaded dynamically,
and is able to resolve the targets of reflective calls
complementing app’s method call graph with the obtained
information. Therefore, StaDART can be used in conjunc-
tion with other static analyzers to make their analysis
more accurate.

• We integrate StaDART with DroidBot to make it fully
automated and to ease the evaluation. Our analysis results
show the effectiveness of StaDART in revealing behavior
which is otherwise hidden to static analysis tools.

• We release our tool as open-source to drive the research
on app analysis in the presence of dynamic code updates.

• We design and develop reflection-bench, a set of bench-
mark apps that use reflection to conceal information
leakage, and use it to test some of the state-of-the-art
static analysis tools. We publish reflection-bench so that
researchers can test the effectiveness of their analysis
tools in the presence of dynamic features (i.e., reflection).

Paper Organization:
§II provides a background on dynamic class loading and

reflection in Android. §III discusses the design and implemen-
tation details of reflection-bench and InboxArchiver. It also
provides the analysis results highlighting the shortcomings of
state-of-the-art Android app analysis tools. §IV gives a high-
level description of StaDART, while §VI covers the implemen-
tation details. §V presents our approach to build method call
graphs and visualise them. §VII reports the evaluation results
of StaDART on real world apps. §VIII discusses the limitations
of the current implementation, and envisages the future work.
§IX overviews the related work, and §X concludes the paper.

II. DYNAMIC CODE UPDATES IN ANDROID

Dynamic code updates techniques, such as reflection and
dynamic class loading (DCL), are used to extend apps’

functionality at runtime. Inherited from Java into the Dalivk
Virtual Machine (DVM), these features are equally supported
by Dalvik’s successor Android Runtime (ART). Android uses
ART to run apps and system services which uses ahead of
time (AOT) compilation using a dex2oat tool to convert DEX
files into .oat binaries. ART is backward compatible with
Dalvik runtime and can execute apps compiled for the DVM.

A. Overview of Dynamic Class Loading

DCL provides flexibility to a developer to load classes at
runtime. Similar to Dalvik, ART allows a developer to load
additional code obtained from alternative locations. It allows
apps to load .zip, .jar and .apk files containing a valid
classes.dex file from outside the app code base, such as
files stored on the internal storage or downloaded from the
network. Android provides a hierarchy of class loaders which
are used to load classes into app’s memory.

DCL is usually used for the following purposes:
Extensibility: As shared libraries help developers in build-

ing modular software, DCL permits to easily extend the app’s
capabilities such that developers can programmatically get new
code running by loading it via different sources (i.e., network,
persistent storage, etc.) at runtime.

App updates: Instead of distributing updated versions of
the same app, functionality provided by the current app is
extended using updates downloaded through the network and
loaded dynamically using class loaders.

Common Frameworks: Depending upon functionality,
apps might use certain common frameworks, e.g., an adver-
tisement framework, which shows advertisements to the user.
Common frameworks are installed as separate apps whose
code can be loaded dynamically by the reliant apps when
needed. In the absence of DCL, the functionality provided
by the framework must have been implemented in each of the
reliant apps. Similarly, in the case of updating that common
functionality provided by the framework, only the framework
needs to updated rather than updating all the reliant apps.

B. Overview of Reflection

Reflection is the ability of a program to treat its own code as
data and manipulate it during execution [16]. Using reflection,
an app can reason about and modify its execution state at
runtime. The dynamically loaded code is usually accessed
using reflection. Android uses the same reflection APIs as
used in Java. As a result, reflection APIs can be used to
retrieve Class objects, access and modify Class members,
create instances of Class and invoke its methods.

In the following, we provide an overview of what reflection
offers to a developer, more details can be found in [36].

Conversion from JSON and XML representation to Java
objects: Reflection is heavily used in Android to automatically
generate JSON and XML representation from Java objects and
vice-versa.

Backward compatibility: It is advised to use reflection to
make an app backward compatible with the previous versions
of the Android SDK. In this case, reflection is exploited either
to call the API methods, which have been marked as hidden
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in the previous versions of the Android SDK, or to detect if
the required SDK classes and methods are present.

Plugin and external library support: In order to extend
the functionality of an app, reflection APIs may be used to
call plug-ins or external library methods provided at runtime.

In general, we can conclude that dynamic code loading
and reflection are both highly useful and essential for apps,
specifically Android apps. Thus, the widespread use of these
techniques in modern Android apps is not surprising.

III. REFLECTION-BENCH AND
INBOXARCHIVER

This section demonstrates how malware developers can
evade static analysis tools and the available online analysis
systems using dynamic code updates.

A. Reflection-Bench

The usefulness of reflection in Android apps development is
undoubted. However, reflection’s inherent property to hinder
static analysis of apps makes it attractive for malware devel-
opers. Although, researchers have worked on app analysis in
the presence of reflection in Android apps, literature and the
research community still lacks a benchmark of apps which
could be used as a test suite to determine the effectiveness of
app analysis tools in the presence of reflection. We present
reflection-bench, a set of Android apps, which use reflection
to conceal information leakage to make detection harder for
static anlyzers. Reflection-bench is designed so that it can be
used to test tools which perform taint analysis as well as those
that only generate call graphs for other forms of static analysis.
1

Overview: Reflection-bench consists of 14 apps which use
reflection in various forms to conceal code that exfiltrate
sensitive information (i.e, geo-position of the phone) and/or
make the flow of the program ambiguous so difficult to
analise. The hardness of resolving the targets of reflection
depends upon the nature of the arguments used in the reflection
APIs. We divide them into two classes, i.e., statically availabe
arguments (those string arguments which are provided as part
of the app package, e.g., strings defined inside the program,
read from a file which is part of the app, etc.) and statically
unavailable arguments (those received over the network, read
from files on disk, received from other apps, etc.).

Statically unavailable arguments can make it impossible for
static analysis tools to resolve reflection. In reflection-bench,
we only consider the case of statically available arguments.
However, with each case the complexity is gradually increased.
In the first few cases, the arguments of reflection APIs are
constant strings assigned to program variables. In the latter
cases, we consider reading the arguments from a properties
file (part of the APK file) and from a hashtable defined inside
the program. Moreover, we also consider the cases where
the string arguments are formed from the concatenation of
multiple strings or decrypted from encrypted strings using

1Reflection-bench is available to researchers at the following link
https://github.com/maqsoodahmadjan/reflection-bench

crypto APIs. In addition, we consider two levels of complexity
where in level one, reflection is used to call only the methods
defined inside the app and in level two, both the methods
defined inside the program as well as the sensitive APIs, which
are responsible for leaking sensitive information, are called
through reflection.

Implementation: There are two major classes in each app,
i.e, BaseClass and MainActivity. BaseClass has two methods,
where Method1 gets the device ID using the getDeviceID
API and stores it in a local field Str. Method2 gets a
string and sends it out using the sendTextMessage API.
MainActivity calls Method1 of BaseClass, gets its field Str
and sends it to the Method2 of BaseClass which leaks it out.
In the following, we describe how different combinations of
reflection APIs are used in each case.

1 MainActivity retrieves the field Str of BaseClass using
getField reflection API.

2 MainActivity retrieves an instance of BaseClass us-
ing the reflection API forName, creates its object using
the newInstance API and gets its field Str using the
getField reflection API.

3 MainActivity retrieves an instance of BaseClass us-
ing the reflection API forName, gets its Constructor us-
ing the getConstructor API, creates its object using
the newInstance API and gets its field Str using the
getField reflection API.

4 MainActivity retrieves an instance of BaseClass us-
ing the reflection API forName, creates its object using
the newInstance API and gets its field Str using the
getField reflection API. It also retrieves the methods of
BaseClass using the getMethod reflection API and calls
them using the invoke reflection API.

5 MainActivity retrieves an instance of BaseClass us-
ing the reflection API forName, gets its Constructor us-
ing the getConstructor API, creates its object using
the newInstance API and gets its field Str using the
getField reflection API. It also retrieves the methods of
BaseClass using the getMethod reflection API and call them
using the invoke reflection API.
In the above cases, the names of the class ”BaseClass”, its
methods and its field are provided as static strings in the
MainActivity class. In the following, starting with Case 4
as a base, we try to acquire/generate these names at runtime.

6 Reads the names of BaseClass, its methods and its field
from a file.

7 Reads the names of BaseClass, its methods and its field
from a Hashtable.

8 Constructs the names of BaseClass, its methods and its
field from multiple strings in the program.

9 Decrypts the encrypted names of BaseClass, its methods
and its field using Crypto APIs.
In all of the above cases, reflection APIs are only used in
MainActivity and the sensitive APIs, i.e., getDeviceId and
sendTextMessage, are called directly in BaseClass. In the
following cases, we introduce reflection in BaseClass too in
addition to Case 4 .
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TABLE I: Analysis with State-of-the-art tools

Apps Taint Analysis Call Graphs
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DataFlow1 7 7 7 - NA NA NA
PlainStringsL1-1 7 7 7 - 7 7 3
PlainStringsL1-2 7 7 7 - 7 3 3
PlainStringsL1-3 7 7 7 - 7 3 3
PlainStringsL1-4 7 7 7 - 7 3 3
FileStringsL1-1 7 7 7 - 7 7 3

HashtableStringsL1-1 7 7 7 - 7 7 3
MultipleStringsL1-1 7 7 7 - 7 7 3
EncryptedStringsL1-1 7 7 7 - 7 7 3

PlainStringsL2-1 7 7 7 - 7 7 3
FileStringsL2-1 7 7 7 - 7 7 3

HashtableStringsL2-1 7 7 7 - 7 7 3
MultipleStringsL2-1 7 7 7 - 7 7 3
EncryptedStringsL2-1 7 7 7 - 7 7 3

10 BaseClass retrieves an instance of the TelephonyMan-
ager class using the reflection API forName, creates its object
using the newInstanc API, gets the sensitive APIs using the
getMethod reflection API and calls them using the invoke
reflection API.
In the above case, we use static strings for the names of the
class TelephonyManager and the methods getDeviceId and
sendTextMessage. In the following we acquire/generate
these names at runtime in addition to Case 10 .

11 Reads the names of TelephonyManager class, methods
getDeviceId and sendTextMessage from a file.

12 Reads the names of TelephonyManager class, methods
getDeviceId and sendTextMessage from a Hashtable.

13 Constructs the names of TelephonyManager class, meth-
ods getDeviceId and sendTextMessage from multiple
strings inside the app.

14 Decrypts the encrypted names of TelephonyManager
class, methods getDeviceId and sendTextMessage
using Crypto APIs.

Tools analysis results: We report the results of analysis on
recent state-of-the-art tools, e.g., Flowdroid [12], Androguard
[1], Amandroid [35], SAAF [26], SCandroid [23] and IccTa
[28]. A summary of the results is provided in Table I.
Those tools which perform taint analysis, such as Amandroid,
etc., are analyzed by performing taint analysis of the apps
in reflection-bench. However, for those tools which do not
perform taint analysis, such as Androguard, etc., we analyze
them by generating call graphs of the apps using these tools. In
Table I, a 3 in column X, indicates that the app is successfully
analyzed by tool X, whereas, a 7 indicates otherwise.

Amandroid, Flowdroid, IccTa and SCandroid To ana-
lyze reflection-bench with Amandroid, Flowdroid, IccTa and
SCandroid, we performed taint analysis of the apps using
these tools. They analyze APK files and report the presence
of sources/sinks of information as well as the tainted paths
between these sources and sinks, if any. As shown in Table I,
Flowdroid did not report any information leakage in any of

the apps. Although, it did report the presence of sources and
sinks in some of the apps. Similar results are obtained with
Amandroid and IccTa. None of these tools could detect the
information flows obfuscated using reflection in reflection-
Bench. With IccTa, it is understandably so, because it relies
on Flowdroid for information flow analysis. SCanDroid termi-
nated with an error without any meaningful results. This tool
is not maintained anymore and no help was available to fix it.
Androguard and SAAF Since Androguard and SAAF gen-

erate method call graphs (MCGs) that represent the invoking
relationships among methods of apps, we analyze reflection-
bench with these tools by generating the MCGs of the apps. In
each of the generated MCGs, we look for the app’s methods
and APIs called through reflection. The first app of reflection-
bench is only for those tools which perform taint analysis. It
only uses reflection to make the data-flow ambiguous and does
not effect the MCG. This is reflected by ’NA’ (Not Applicable)
in the first row of Table I for the tools that construct call graphs
only. The rest of the apps can be used to test both kinds of
tools. As shown in Table I, Androguard does not correctly
identify any method called through reflection in any of the
apps. SAAF’s results are relatively better than Androguard’s
results. SAAF is able to correctly identify the targets of
reflection calls in three of the apps in reflection-bench. In these
four apps, the arguments provided to the reflection APIs are
plain strings. SAAF does not resolve the targets in other cases
where the arguments are either read from a file or hashtable,
encrypted strings and formed from multiple strings inside the
apps. It is important to remember here that none of the apps
get any arguments from outside the app.
StaDART StaDART introduces the dynamic element in re-

solving the targets of reflection (further details are provided in
§IV) and, therefore, it performs better as shown in Table I. It
is based on Androguard and generates MCGs similar to those
generated by Androguard. So, we do not analyze the first app
in reflection-bench. Results of the rest of the apps, as shown
by the 3 in column ’StaDART’, indicate that all the methods
called through reflection are correctly identified by StaDART.

These analysis results show that reflection makes static
analysis of apps harder. Specially, when the parameters of
reflection APIs are not readily available in the code, static
analysis tools find it extremely hard to properly analyze apps.

B. InboxArchiver: Test Malware using DCL
App developers use dynamic code loading for various legit-

imate purposes, mainly extending the functionality of the app.
However, this feature can be used by malware developers to
bypass analysis tools deployed at the app markets. A malware
developer can submit an apparently benign app with hidden
malicious functionality, i.e., obfuscated functionality to load
additional code provided once the app is installed on a user’s
device. Since Reflection-bench only relies on reflective calls,
We developed an InboxArchiver app to demonstrate how a
malware developer can bypass analysis tools using DCL.

Overview: InboxArchiver is a simple app that reads the
SMS inbox and sends some statistics to a number provided
by the user. These statistics include the number of SMS mes-
sages sent to and received from certain numbers. A user can
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configure InboxArchiver to receive a daily, weekly or monthly
SMS message containing these statistics. The malicious part
of the app, however, downloads some additional code from the
Internet which contains other numbers potentially owned by
an adversary, loads this code using the DCL APIs and leaks
these SMS inbox statistics.

Implementation: The main features of InboxArchiver are
the use of DCL and reflection having encrypted strings repre-
senting the code paths, class names and method names. This
helps InboxArchiver to evade static analysis tools. In order
to evade dynamic analysis, it makes use of a simple delay
technique where again the APIs are called using reflection
with encrypted parameters. It waits for 10 minutes before
downloading the malicious code from the Internet and loading
it using DCL. Although there are other more sophisticated
anti-analysis techniques available, such as emulator detection,
root detection, etc., the use of just a delay technique in
InboxArchiver highlights the role of DCL/reflection in evading
analysis tools.

Fig. 1: InboxArchiver

InboxArchiver consists
of three main classes, i.e.,
a MainActivity class,
a MessageSender class
and a Loader class. The
MainActivity class
presents an interface to the
user as shown in Figure 1.
The MessageSender
class, which is a Service
and runs in the background,
is responsible for retrieving
the inbox statistics and
sending it periodically to
a pre-configured number.
After a certain delay, the
MessageSender class
instantiates an object of

the Loader class which handles the downloading of
additional code from the Internet and dynamically loading
it using DCL APIs. It makes use of encrypted parameters
and encryption/decryption functionality provided by other
auxiliary classes.

Analysis results: We uploaded InboxArchiver to a number
of online Android app analysis systems. Table II shows a
summary of the obtained results2. Column Analyzed shows
whether the app is properly analyzed or not. The next two
columns, Obfuscation and DCL, show if the analysis systems
detect obfuscation and the use of dynamic code loading,
respectively. The last column in the table represents the final
remarks about the app.

Among the online analysis tools shown in Table II, we did
not receive any results from CopperDroid and the app is still
in the queue for more than a year now. All other tools were
unable to detect that the submitted app is malicious. VirusTotal
scanned the app with 54 antivirus tools, including BitDefender,

2Similar proof of concept apps, which were able to bypass the Google
Bouncer check using dynamic code update features, can also be found in
previous research [19], [31].

TABLE II: InboxArchiver: Analysis Results

Analysis System Analyzed Obfuscation DCL Malware
VirusTotal [9] 3 7 7 7
UnDroid [5] 3 3 7 7
AndroTotal [3] 3 7 7 7
ds-andrototal [7] 3 7 7 7
MobiSec Lab [6] 3 7 7 7
CopperDroid [34] Queued - - -
SandDroid [8] 3 3 3 7

Fig. 2: System Overview

GData, AVG, Avast and Kaspersky, etc., and none of them
labeled it suspicious. UnDroid and SandDroid termed the app
as obfuscated, while SandDroid could also detect dynamic
code loading in the app. However, it could not detect the
loaded file and analyze it.

IV. AN OVERVIEW OF STADART

The lack of effectiveness of state-of-the-art static analysis
tools and online analysis systems to capture behavior exhibited
at runtime by means of reflection/DCL is clearly evident from
the analysis results of reflection-bench and InboxArchiver as
discussed in the previous section. Consequently, these tools
cannot successfully detect malware that use these dynamic
code update features to execute malicious functionality. To
address this issue, we design StaDART3, a tool that interleaves
static and dynamic anlaysis, to analyze apps that use reflection
and DCL.

The architecture of StaDART presented in Figure 2 com-
prises two logical components: a server and a client. The static
analysis of an app is performed on the server. StaDART allows
an analyst to easily plug in and use any static analyzer in its
architecture. The static analyzer on the server builds the initial
method call graph (MCG) of the app, integrates the results of
the dynamic analysis coming from the client, and stores the
results of that analysis. The client part of StaDART is based
on an API hooking technique that intercepts calls to dynamic
code update APIs and captures the dynamic behavior. The
client part can be hosted either on a real device or an emulator.
The client runs the app whenever dynamic analysis is required.
StaDART interleaves the execution of the static and dynamic
analysis phases and an app can have several of these phases.
However, for simplicity of the presentation without loss of
generality, we describe them sequentially.

a) Preliminary analysis: The server statically analyzes
an app package and builds a MCG of the application (see

3Stadart is available to researchers at the following link
https://github.com/maqsoodahmadjan/stadart
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Step a in Figure 2; solid arcs denote edges resolved statically).
Dynamically loaded code cannot be analyzed during this phase
and, thus, the corresponding nodes and edges are not present
in the MCG. Further, the names of methods called through
reflection may also not be inferred if they are represented
as encrypted strings or generated dynamically. Still, a static
analyzer can effectively detect the nodes in the MCG where
the functionality of an app may be extended at runtime. Indeed,
the usage of reflection and DCL requires to use specific API
calls provided by the Android platform. The server detects
these calls during the static analysis phase by searching for
methods where DCL and reflection API calls are performed.
We call these methods methods of interest (MOI).

b) Dynamic execution: If any MOI is detected in the
app, StaDART installs the app on the client (Step 2) and
launches the dynamic analysis. The dynamic phase is exercised
to complement the MCG of the app and to access the code
loaded at run time. In our implementation the dynamic analysis
is performed on a device which uses a vtable tampering
technique for API call interception and adding StaDART client
side functionality. The added functionality logs all events when
the app executes a call using reflection, or when additional
code is loaded dynamically. Along with these events, the client
also supplies some additional information, e.g., in case of a
reflection call, the information about the called function, its
parameters and the stack trace (that contains the ordered list
of method calls, starting from the most recent ones) is added.
In case of a DCL call, the path to the code file and the stack
trace are supplied. The information collected by the client is
passed back to the server side (Step 3).

c) Analysis consolidation: The server performs an analy-
sis of the obtained information. In case of a reflection call, the
server complements the MCG of the app with a new edge (in
Figure 2, it is represented by a dashed arc). This edge connects
the node of the method that initiated the call through reflection
(the node at the beginning) with the one corresponding to the
called function (the node at the end). When DCL is triggered,
the client captures the location of the code file. Using this
evidence, the server downloads the file (Step 4) containing the
code, and analyze it statically. The MCG of the app is then
updated with the obtained information (see part of the MCG
in dashed oval in Figure 2). Additionally, for each downloaded
file the server analyzes whether it contains other MOIs. If it
does, the list of the MOIs for the app is updated. This allows
StaDART to unroll nested MOIs. The stack trace data for both
the reflection and DCL cases is used to detect which MOI
initiated the call.

d) Marking suspicious behavior: In Android, some API
calls are guarded by permissions. Since APIs protected by
permissions could potentially harm the system or compromise
a user’s data, the permissions must be requested in the
AndroidManifest.xml file. However, there is no actual
check on the permissions required to execute the written code
and sometimes developers request more permissions than they
actually use. In this case, those apps are called overprivileged.
Many researchers, e.g., Bartel et al. [15], identified that
malware, adware and spyware exploit additional permissions
to get access to security sensitive resources at runtime.

Based on these considerations, we classify the following
app behavior patterns as suspicious:
• An app dynamically loads code that contains API func-

tions protected with permissions. Indeed, malware may
use this approach to evade detection by static analyzers,
as the security-sensitive code is loaded dynamically.

• An app uses reflection APIs to call an API method
protected with a dangerous permission. This functionality
can be used, for instance, to send malicious SMS, which
cannot be detected by static analysis tools because the
name of the SMS sending function is encrypted and
decrypted only at runtime.

StaDART automatically detects such suspicious patterns and
raises a warning if such patterns occur during the analysis.
Section VII shows that indeed malware samples do expose
such suspicious patterns.

In addition, we further analyze the parameters passed to
methods called using reflection APIs. Indeed, a suspicious
pattern, i.e., a reflective call to an API guarded with dangerous
permission, in conjunction with suspicious parameters, e.g.,
a premium number in case of the sendTextMessage()
API, helps in identifying malicious behavior concealed using
reflection.

V. METHOD CALL GRAPH

Method call graphs (or function call graphs) identify the
caller-callee relationships for program methods. These struc-
tural representations of programs are widely used for different
purposes. In the scope of Android, method call graphs are used
to detect malware, identify potential privacy leaks in apps, find
vulnerabilities and execution paths for automatic testing, etc.
StaDART extends the initial MCG generated with a traditional
static analyzer with the information detected at runtime. Thus,
if an app exposes dynamic behavior, all mentioned approaches
can benefit from the expanded MCG obtained with StaDART.

a) Example: To visualize the capabilities of StaDART
and the process of method call graph expansion, we show the
evolution using an example of a demo app. Figure 3a shows
the MCG of the app obtained with the AndroGuard static
analyzer [1]. Figure 3b shows the one gained with StaDART
before dynamic execution phase, and Figure 3c presents it with
dynamic execution phase. The demo app dynamically loads
some code from an external .jar file at runtime and calls
the loaded methods through reflection.

Figure 3a illustrates that AndroGuard identifies only the
presence of ordinary methods and DCL calls (Ellipse 1) but no
further analysis is done about those. Yet, Figure 3b shows that
after preliminary analysis StaDART selects 3 paths, which are
surrounded by dashed ellipses. Ellipse 1 shows that a MOI
(the dark grey node) invokes a constructor (the dark green
node) through reflection. Similarly, Ellipse 2 displays a method
invocation through reflection. Ellipse 3 depicts that a DCL call
(the red node) is performed in a MOI (the dark grey node).

During the dynamic analysis, StaDART adds the edges that
are outlined by Ellipses 4-7 (see Figure 3c). These ellipses
show the cases when the MOIs are resolved and corresponding
nodes and edges are added to the MCG. Ellipse 4 shows that as
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Fig. 3: MCG of demo app Obtained with a) AndroGuard b) StaDART after Preliminary Analysis c) StaDART after Dynamic
Analysis Phase

a result of a DCL call (the red node) a new code file has been
loaded (the pink node). Ellipse 7 shows that a class constructor
(the grey node) is called through reflection. Ellipse 5 shows a
method invoked through reflection. This method contains an
API call protected by the Android permission indicated by
the blue node in Ellipse 6. There are also nodes and edges
that appear as a result of the analysis of the code file (the
pink node) loaded dynamically. These nodes and edges are
connected with the rest of the graph through the reflection
new instance call (see Ellipse 7).

Ellipses 2, 3, 8, 9 show other types of connections possible
among nodes in a MCG obtained with our tool. Ellipse 2
shows the connection between the class and its constructor,
Ellipse 3 shows an ordinary relation between two methods,
Ellipse 9 connects the static initialization block and the class,
and Ellipse 8 shows that the method is called from the static
initialization block.

Each node type is assigned with a set of attributes, not
shown in the figures. The analysis of values of these attributes
can facilitate dissection of Android apps accompanied by the
expanded MCG. For instance, each method node is assigned
with attributes, which correspond to a class name, a method
name and a signature of this method. A permission node is
assigned with a permission level along with the information
about the API call that it protects.

VI. IMPLEMENTATION

The workflow of StaDART’s operation is shown in Figure 4.
App analysis starts at the server side. All occurrences of
reflection and DCL methods are identified in the code of the
application under analysis. In case neither of them is found,
StaDART builds a MCG of the app and exits. Otherwise, the
app is analyzed using StaDART client on a device.

A. The server

The server side of StaDART is a Python program that
interacts with a static analysis tool. Currently, StaDART uses
AndroGuard [1] as a static analyzer. AndroGuard represents
compiled Android code as a set of Python objects that can be
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Fig. 4: StaDART Workflow

manipulated and analyzed. However, StaDART can work with
any static analysis tool that is able to analyze apk and dex
files. To improve suspicious behavior detection we substituted
the permission map embedded in AndroGuard (built for An-
droid 2.2 in [22]) with the one generated by PScout [13] for
Android 5.1.1, which is the latest API-permission mapping
available in the research community.

The pseudo-code of the main server function is presented
in Algorithm 1. The server starts the analysis of the provided
app by extracting the classes.dex file (see Step 1, 2 and
3 in Figure 4; Line 2 in Algorithm 1), and then dissects the
extracted code. During this step StaDART searches for all the
occurrences of reflection and DCL calls in the code. The list of
searched patterns for these API calls is presented in Table III.

If MOIs are found, StaDART selects a device (a real phone
or an emulator) to perform the dynamic analysis on (Line 8)
and installs the app under analysis (Line 10) onto the client
(Step 5 in Fig. 4). After that the server obtains the UID of the
installed package (Line 11) and starts a loop (Lines 13-25) that
analyzes, one by one, the messages (Line 12) obtained using
the logcat utility from the main log file of the Android system.
Basically, each obtained message is represented in the JSON
format and contains values for the following fields: UID (re-
quired), operation (required), stack (required), class (optional),
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Algorithm 1 App Analysis Main Function Algorithm
1: function PERFORM ANALYSIS(inputApkPath, resultsDirPath)
2: makeAnalysis(inputApkPath)
3: // Check if there are MOI
4: if !containsMethodsToAnalyze() then
5: performInfoSave(resultsDirPath)
6: return
7: end if
8: dev ← getDeviceForAnalysis()
9: package name← get package name(inputApkPath)

10: dev.install package(inputApkPath)
11: uid← dev.get package uid(package name)
12: messages← dev.getLogcatMessages(uid)
13: loop
14: msg ← dequeue(messages)
15: // analyzeStadartMsg contains a switch statement
16: // that selects a corresponding processing routine
17: // shown in Algorithms 2 and 3 based on the msg type
18: analyzeStadartMsg(msg)
19:
20: // Quit if a user finishes analysis
21: if finishAnalysis then
22: performInfoSave(resultsDirPath)
23: return
24: end if
25: end loop
26: end function

TABLE III: The List of Searched Patterns

Class Method Prot.
Dynamic class loading

Ldalvik/system/PathClassLoader; < init > .
Ldalvik/system/DexClassLoader; < init > .

Ldalvik/system/DexFile; < init > .
Ldalvik/system/DexFile; loadDex .

Class instance creation through reflection
Ljava/lang/Class; newInstance .

Ljava/lang/reflect/Constructor; newInstance .
Method invocation through reflection

Ljava/lang/reflect/Method; invoke .

method (optional), proto (optional), source (optional), output
(optional). The value of the UID field is used to select the
messages produced by the analyzed app. If the user stops the
analysis, StaDART saves the results and finishes its execution.

The function analyzeStadartMsg (Line 18) analyzes
the selected StaDART messages obtained from the client. It
extracts the value of the operation field and based on this
value selects the appropriate routine to analyze the message.

The routines for reflection messages analysis are similar, so
we consider them on the example when operation corresponds
to reflection invoke. The algorithm for analysis of the reflection
invoke messages is shown in Algorithm 2 (algorithm for
analysis of reflection newInstance messages is very similar so
we do not show it). Lines 2 - 4 extracts the method name along
with its class name and the prototype, which has been called
through reflection. Line 5 gets the stack from the message.
Line 7 searches for the first reflection invoke occurrence in
the stack. The next stack entry corresponds to the method that
has performed the reflection call invSrcFrStack (Line 9).
Then in the loop StaDART compares this method with the
list of MOIs extracted from the app executable (Lines 10 -
20). If the method is found StaDART complements the MCG
with the obtained information (Line 15), and deletes it from
the list of uncovered invoke MOIs (Line 17). Otherwise, it
adds this method to the list of vague methods (Line 21). This
information is later analyzed to see why the method calling

Algorithm 2 Analysis of the Reflection Invoke Message
1: function PROCESSREFLINVOKEMSG(message)
2: cls← message.get(JSON CLASS)
3: method← message.get(JSON METHOD)
4: prototype← message.get(JSON PROTO)
5: stack ← message.get(JSON STACK)
6: invDstFrCl← (class,method, prototype)
7: invPosInStack ← findFirstInvokePos(stack)
8: thrMtd← stack[invPosInStack]
9: invSrcFrStack ← stack[invPosInStack + 1]

10: for all invPathFrSrcs ∈ sources invoke do
11: invSrcFrSrcs← invPathFrSrcs[0]
12: if invSrcFrSrcs 6= invSrcFrStack then
13: continue
14: end if
15: addInvPathToMCG(invSrcFrSrcs, thrMtd, invDstFrCl)
16: if invPathFrSrcs ∈ uncovered invoke then
17: uncovered invoke.remove(invPathFrSrcs)
18: end if
19: return
20: end for
21: addV agueInvoke(thrMtd, invDstFrCl, stack)
22: end function

Algorithm 3 Analysis of the DCL Message
1: function PROCESSDEXLOADMSG(message)
2: source← message.get(JSON DEX SOURCE)
3: stack ← message.get(JSON STACK)
4: newFile← dev.get file(source)
5: newFilePath← processNewFile(newFile)
6: dlPathFrStack = getDLPathFrStack(stack)
7: if dlPathFrStack then
8: srcFrStack ← dlPathFrStack[0]
9: thrMtd← dlPathFrStack[1]

10: if dlPathFrStack ∈ uncovered dexload then
11: uncovered dexload.remove(dlPathFrStack)
12: end if
13: addDLPathToMCG(srcFrStack, thrMtd, newFilePath)
14: if !fileAnalyzed(newFilePath) then
15: makeAnalysis(newFilePath)
16: end if
17: return
18: end if
19: addV agueDL(newFilePath, stack)
20: end function

reflection was not found in the app executable during the static
analysis phase.

The processing function for the DCL messages is slightly
different (see Algorithm 3). From the message received from
the client the server extracts the source path of the file
containing the code loaded dynamically (Line 2). Using this
information, StaDART downloads the file locally (Line 4), and
processes it (Line 5). This process includes computation of
the file hash and copying the file into the results folder with a
new filename, which includes the computed hash. The file hash
allows us to check whether the file has been already loaded and
avoid analysis of already checked code. Otherwise, the code
analysis for MOIs is performed for the loaded code (Line 15).
Function getDLPathFrStack (Line 6) searches for a pair
of a DCL call and a MOI in the stack corresponding to the one
extracted from the app executable. If this pair is found, then
it is removed from the list of uncovered DCL calls (Line 11).
Otherwise, StaDART adds the information about the dynamic
class loading call into the list of vague calls (Line 19).

Notice that the presented algorithms are simplified versions
of the ones actually implemented in the server part. For
instance, in a real app it is possible that the same MOI acts like
a proxy used to call different targets (e.g., the same method
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could be used to load different code files). The real algorithms
implemented in StaDART are able to process these cases.

B. The client

The client side can run either on a real device or on an
emulator. Using the emulator is more convenient because one
can run the client and server on the same machine. The main
drawback is that currently the Android emulator is quite slow.
Moreover, mobile apps may suppress some functionality if
they detect they are running in an emulated environment.
With these limitations in mind, we implemented and tested
our client on a real device. However, the code is device-
independent and easily portable to any other device/emulator.

To capture the dynamic behavior offered by reflection and
DCL, we intercept a number of Android API methods that
provide an interface to DCL and reflection capabilities. A
brief overview of these APIs is provided earlier in §VI.
Some of them have been modified across different Android
versions moving their implementation to the native side (e.g.,
java.lang.Class.newInstance has only a native im-
plementation in Android 6). To achieve dynamic instrumen-
tation of Java-level APIs we used the approach proposed in
ArtDroid [20] to intercept Java virtual methods. It intercepts all
calls to monitored Java virtual methods including calls via Java
reflection, native code or dynamically loaded code without
any modification to both Android OS and the target app. In
addition, we integrated native function hooking capabilities in
StaDART by means of inline hooking technique. The client
side employed by StaDART is completely Android version-
agnostic and it is able to interpose custom code on both Java
methods and native functions. Therefore, it can be used to
analyze Android apps on any Android version intercepting
DCL and reflection calls irrespective of the actual code repre-
sentation (i.e., Java or native). To support all available Android
versions, we included in StaDART the capability of intercept-
ing DCL and reflections calls according to the running Android
version. In the following we describe methods intercepted by
StaDART on both Dalvik and ART runtime. The code added
by StaDART to perform requested analysis is not influenced
by the underlying Android version.

To obtain the information related to DCL we added a hook
to the method openDexFile of the DexFile class. This
method is called when a new file with the code is opened.
It gets three parameters as an input, where sourceName
is of our interest. Moreover, we added a hook to the con-
structor of DexClassLoader class that is used to create
a class loader that loads classes from JAR and DEX files.
It gets four parameters as an input, where dexPath and
optimizedDirectory are of our interest. The former
specifies the complete path of the DEX file that is being loaded
while the latter is the directory where the optimized version
will be written to as a result of the compilation step. The
added code forms a JSON message that contains the path to
the file, from which the code is loaded (sourceName). Along
with this information, the stack trace data and the UID of the
process are also added into the message, which is then printed
out to the main log file of Android.

To get the information about method invocation through
reflection, a hook was placed into the invoke method of
the Method class. As of the release of Android version 6,
this method is defined as public native, thus the client
will hook the appropriate function by means of the proper
hooking engine, according to the running Android version.
Each Method object has declaringClass, name and
parameterTypes member fields, which represent class
name, method name and prototype of the invoked method,
respectively. Moreover, invoke gets an array of Object type
as input which represents the arguments intended for the target
method. This information along with the stack trace is put into
the StaDART message. Similarly, to log the information about
new class creation through reflection, we put our hooks into the
newInstance method of the Class and Constructor
classes. As for the invoke, different hooks were added
targeting newInstace code representation for both DVM
and ART runtime.

Each StaDART message contains the stack trace informa-
tion. Stack trace is a sequence of method calls performed in
the current thread starting from the most recent ones. The
information from a stack trace is usually used to find the
origin of an exception in a program. In our case, the stack
trace information is used to detect the MOI, which calls
the reflection or DCL methods. In essence, a stack trace is
an array of stack trace elements. Each stack trace element
contains information about the class name, the method name
and eventually the line number of the method call in the source
code. Unfortunately, using only this information it is not
possible to uniquely identify the MOI, because we do not have
access to the source code of the app. Moreover, due to function
overloading it is possible to have several methods in a class
with the same name. In the previous version of StaDART (i.e.,
StaDyna), we had modified the StackTraceElement class
so that it can store the information about the method prototype,
but this approach is not feasible when it comes to dynamic
instrumentation. To overcome this limitation and detect MOIs
from stack trace data even when they appear multiple times
with same name but different prototype, we employed a hybrid
approach. First, we statically detect potentially ambiguous
methods (i.e., methods in a class with the same name) declared
in the target app and for each method found we store its
prototype information. Then, we dynamically instrument the
app to insert a shadow method that is basically an empty
wrapper in order to distinguish calls to the wrapped ambiguous
method. The dynamically added wrapper is named as the
concatenation of ambiguous method’s name and its prototype
that has been stored in the previous step. As result of an
intercepted call, the wrapper makes a direct call to the wrapped
method. In this way, we are able to distinguish target MOIs
by looking for them into the stack trace data as it is normally
returned by the Android OS. In fact, method name and its
prototype allow us to uniquely identify a method in a class.

A StaDART message has a header and a body. To dis-
tinguish StaDART messages from other log messages we
add a special marker to the header. The second part of the
message header is the part number. Currently, there is a
limit on the length of the Android log entries specified by
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the constant LOGGER_ENTRY_MAX_PAYLOAD. To overcome
this problem, we added the functionality to the client that
allows it to split a message into several parts. The server takes
care of assembling the original message.

VII. EVALUATION

Experiment Setup and Test Suite: This section describes
our app test suite and reports on the results of our experiments.
We evaluated StaDART with a dataset of real world benign
and malicious apps. The server runs on a machine with 3.2
GHz Intel Core i7 processor and 8 GB DDR3 memory.
The client is a Google Nexus 6 smartphone running stock
Android OS version 7.1.1 connected to the server using a
standard USB cable. The evaluation test suite consists of a
set of 1,000 benign and 1,000 malicious apps. The benign
apps were selected based on their popularity. We selected the
1000 most downloaded apps according to AppFigures [4], an
app tracking platform that monitor the downloads and sales
of apps from Google and Apple app stores. The malware
samples were selected from Drebin [11] dataset populated by
5,560 apps from 179 different malware families. We selected
the samples only from families exhibiting DCL as part of
malicious behaviour.

Evaluation Goal: In line with the aim of StaDART, i.e., un-
covering dynamic behavior, we set certain research questions
that this evaluation should answer as our evaluation goal.
• RQ1: How widespread is the use of these dynamic code

update features in the analyzed dataset and does StaDART
reveal dynamic behavior in each of the analyzed app?

• RQ2: How effective is StaDART in expanding the
MCGs? How expansion of MCGs due to dynamic be-
havior differ in the malicious and benign dataset?

• RQ3: Does StaDART reveal potentially dangerous be-
havior, i.e., reveal nodes guarded with permissions? How
do they differ in benign and malicious apps?

• RQ4: Does malware exploit the APIs used for dynamic
code updates, e.g., DCL or reflection, to upload dynam-
ically additional code?

• RQ5: Do the analyzed apps show suspicious behavior,
i.e., use additional new permissions which are not used
in the initial MCG? How does this behavior differ in
malicious and benign apps?

Analysis Results: Figure 5 illustrates the prevalence of
dynamic code update APIs in the analyzed dataset and the
effectiveness of StaDART in expanding the MCGs. It shows
the percentage of apps with invoke, newInstance and DCL
among both benign and malicious app dataset. The right
most bar represents the percentage of apps where StaDART
expanded the MCG. In the dataset, close to 90% of the apps
use invoke and/or newInstance APIs. Similarly, 48% of
the apps use DCL feature which is considerably higher to
previous analysis results [40] (first part of RQ1). Increase in
the number of apps using DCL could largely be related to
the increasing complexity of the Android apps. StaDART was
able to expand the MCG by at least one node in 80% of the
analyzed apps (second part of RQ1).

Figure 6 shows MCG expansion using StaDART for the
apps in the analyzed dataset using reflection only, both benign
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Fig. 5: Prevalence of Reflection/DCL and StaDART effective-
ness in expanding MCG

and malicious. It shows the average percentage increase in
the number of nodes, edges, nodes with normal permission
and nodes with dangerous permissions. Clearly, the lower
percentage increase is attributed to apps that use only reflection
as dynamic code update feature. The MCG expansion in these
apps, which do not use DCL, is minimal and more or less
similar in benign and malicious apps (RQ2).
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Fig. 6: MCG Expansion

To clarify the role of DCL in MCG expansion and dynamic
behavior, we extracted the results from apps that use DCL.
Figure 7 shows the effectiveness of StaDART when the apps
use DCL. It shows the average percentage increase in the
number of nodes, edges, nodes with normal permissions and
nodes with dangerous permissions. It clearly shows a con-
siderably higher increase in the number of nodes, edges and
nodes guarded with permissions (both normal and dangerous).
In addition, it can be seen that the malicious apps hugely
increase their code base when they use DCL (RQ4). Similarly,
the number of nodes guarded with permissions for malicious
apps doubled or in some cases quadrupled (RQ3). This clearly
indicate that malicious apps make use of sensitive APIs in the
loaded code. We also check the added nodes for Signature
level permission and SignatureOrSystem level permission.
However, we did not observe a noticeable increase in the
number of nodes guarded with these permissions.

Although, the high increase in the number of nodes guarded
with dangerous permissions is indeed suspicious, we investi-
gate the analysis results further for a more suspicious malware
behavior. In practice, malicious payloads are packaged inside
legitimate apps and their manifest files are modified to cover
for the extra permissions needed by the payload. In this
scenario, the final MCG of the app contains nodes guarded
with new permissions, i.e., those not found in the initial MCG.
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Fig. 7: MCG Expansion when apps use DCL

Figure 8 shows the distribution of apps based on increase in
the number of nodes guarded with permissions in the form
of pie-charts, in benign apps and malware. Here we discuss
only those apps which use DCL. The white part shows the
percentage of apps with no increase in the number of nodes
guarded with permissions, whereas the grey part represents
the percentage of apps with increase in the number of nodes
guarded with permissions. The darker grey part shows the
percentage of apps where new permissions are used in the
dynamically added part using StaDART.
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Fig. 8: Increase in permission nodes. (L) Benign (R) Malicious
apps

The pie-chart for the benign apps shows that a very small
fraction of the apps observe an increase in the number of
nodes guarded with dangerous permissions. In contrast, a
considerably higher number of malicious apps reveal such
behavior. Also, in none of the benign apps in the dataset,
the loaded code contained nodes guarded with new dangerous
permission. However, all the malicious apps in the dataset
that loaded code dynamically contained nodes guarded with
at least one new dangerous permission (RQ5). Moreover, a
further analysis of the loaded code in malicious apps reveals a
pattern of dangerous permissions, e.g., READ_PHONE_STATE
and INTERNET, that could be associated with malicious
functionality, such as privacy leakage, etc.

Also, noteworthy here is the fact that the revealed behavior
is only due to triggering of a small fraction of the total
MOIs. Albeit the most advance automated triggering tool in
the research community, DroidBot does not serve well for app
exploration from a security point of view. Taking into account
the low exploration that DroidBot achieved in most of the apps
and the suspicious results that we observed, the actual hidden
suspicious/malicious behavior could be alarming.

Our results show evidence that malware samples are more
overprivileged (they contain more permission types required
for the code loaded dynamically), so it is valid to identify the
apps as suspicious if they are overprivileged. Yet, as benign
apps can be overprivileged too, more research is required
to understand if an application is benign or malicious, and
StaDART can be handy in exploration of this topic.

VIII. DISCUSSION

For any dynamic (or hybrid for that matter too) analysis
tool, coverage is the main limiting factor and StaDART is no
different in that regard. For StaDART the coverage of MOIs
(the ratio between the number of executed MOIs at least once
and total number of discovered MOIs) is especially important.
In order to achive higher MOI coverage, we explored if the
tools like monkey can be handy. However, in our experiments
we found out that pseudo-random events generated by the
tool do not produce tolerable coverage values for MOIs.
Therefore, we opted for a more advance automated triggering
tool, DroidBot, to trigger MOIs. However, as discussed in the
previous section, even DroidBot did not achieve reasonable
coverage of MOIs. Possible enhancement can be achieved
using techniques such as the one used in SmartDroid [41].
SmartDroid allows an expert to specify sensitive API methods
required to be triggered. In case of StaDART the sensitive API
methods correspond to reflection and DCL calls.

Another possible direction to reduce the dependence on the
triggering tool is to resolve as many targets of reflection calls
as possible statically, at least those which are represented
by constant strings [26]. The analysis performed in [22]
has shown that it was possible to resolve automatically the
targets of reflection calls in 59% of applications that used
reflection. At the same time, the analysis was performed for
the “closed world” scenario, which is not realistic, given that
dynamic class loading is a popular technique for modern apps.
Consequently, we can minimize the more expensive dynamic
part of the analysis.

Usually, dynamic analysis allows an expert to explore only
one execution path at a time. However, dynamic traces may
differ depending on the context of the execution, e.g., some
methods may contain calls invoked with parameters affecting
the reflection call target. Therefore, another direction for
improving StaDART is to incorporate information obtained
during different runs of analysis.

StaDART has also other limitations. Its analysis is based on
the UID of an application. However, it is possible in Android
that several apps have the same UID. In this case, StaDART
will also collect the information produced by other apps with
the same UID. At the same time, this information will not be
used to complement MCG, but will be added to the category
of vague calls that need to be manually analyzed later.

IX. RELATED WORK

Apps are analyzed for malicious contents before being
published to the app markets. Many static and dynamic
analysis techniques have been proposed for Android. The
ded system re-targets Dalvik bytecode into Java class files

11



that can be analyzed by the variety of tools developed for
Java. DroidAlarm [42] performs static detection of privilege-
escalation vulnerabilities in apps by constructing paths in inter-
procedural call graphs from a sensitive permission to a public
interface accessible to other apps. Gascon et al. [24] employ
comparsion of functional call graphs (FCG) mined using
AndroGuard to detetct malicious Android apps. StaDART
can complement these techniques by providing more precise
graphs required for analysis.

TaintDroid was among the first dynamic analysis tools for
Android apps [21]; it tracks propagation of information via
the TaintDroid infrastructure-equipped smartphone software
stack. It detects leakage of user private information to network
interfaces. This approach is followed by DroidScope [38].
DroidScope allows to emulate app execution and trace the
context at different levels of the Android software stack: at
the native code level, at the Dalvik bytecode level, at the
system API level, and at the combination of both native and
Dalvik levels. While executing an app in DroidScope a security
analyst can track events at different levels and instrument pa-
rameters of invoked methods to discover a malicious activity.

Dynamic analysis techniques are especially difficult to au-
tomate due to the need of emulating a comprehensive interac-
tions of apps with the system and a user (UI interactions). Sev-
eral approaches are proposed to automate the triggering of UI
events, from random event generation [27] to more advanced
approaches like AppsPlayground [33] and SmartDroid [41].
However, all of them still have many limitations on the type
of events they can handle and the coverage.

Poeplau et al. [31] selected possible vulnerable patterns
of dynamic code loading and built a tool that can analyze
Android apps for the found patterns. Moreover, they propose
to use whitelists to prevent dynamic code loading that can
potentially expose dangerous behavior. Whitelisting prevents
unauthorized code from running. To get authorization the code
must either be signed and its signature has to be included
into a special list distributed by trusted authorities. However,
as mentioned in the article [31], extraction of the dangerous
behavior is a difficult problem by itself, especially when
the protected API is called through reflection. In contrast,
StaDART aims not at preventing this loading (because a lot
of legitimate apps use it and extra complications will not be
welcomed by the developers) but at its analysis.

Comparing to Stadyna [40], StaDART differs in various
aspects. The client side of StaDART is based on API hooking
using a vTable tampering technique used in ArtDroid, rather
than modification to the Android framework, and therefore,
can be easily ported to different versions of Android. Also,
StaDART analyzes the arguments passed to the APIs/methods
called using reflection API invoke. On the client side, unlike
Stadyna which requires a human user to interact with the
app during analysis, StaDART relies on a triggering tool,
DroidBot, to make the analysis fully automated. StaDART is
evaluated on a much larger set of applications, 2,000 apps
(1,000 benign and 1,000 malicious) in comparison to Stadynas
10 apps (5 benign and 5 malicious).

Gaps in the static analysis techniques in the presence of
dynamic class loading, reflection and native code were previ-

ously studied for Java. For example, similarly to our approach,
in [25] a pointer analysis (based on program call graphs)
technique for the full Java language is extended by addressing
dynamic class loading and reflection via an “online” analysis,
when a call graph is built dynamically based on the program
execution, and dynamic class loading, reflection and native
code are treated in real time by modifying the pointer analysis
constraints accordingly.

A run-time shape analysis for Java is investigated in [18].
Traditionally a shape analysis operates on the call graph of a
program and determines how heap objects are linked to each
other (e.g., if a variable can be accessed from several threads).
As call graph produced from java program can be incomplete,
[18] suggests how to execute an incremental shape analysis
when the call graph evolves dynamically. Our proposal does
not involve a shape analysis, yet the ideas behind our proposal
and [18] are similar. Livshits et. al. [30] proposed a refinement
of the static algorithms to infer more precise information on
approximate targets of reflective calls, as well as to discover
program points where user needs to provide a specification in
order to resolve reflective targets.

Relevant to StaDART is TamiFlex [17] that complements
static analysis of Java programs in the presence of reflection
and custom class loaders. Using the load-time Java instru-
mentation API, TamiFlex modifies the original program to
perform logging of class loading and reflection call events.
This information is used to seed a tool that performs static
analysis of the program having the information obtained
during the dynamic analysis phase. This work differs from
StaDART in several aspects. First, TamiFlex uses a special
Java API that is not available in Android. Second, although
in Android it is possible to instrument an app before loading
it on a device (offline instrumentation), some Android apps
check the app signature in its code that is changed during
the patching. Thus, for these apps the TamiFlex approach
will not work in Android. Third, TamiFlex requires some
debug information (the line number of the function call) to be
present. In Android during the obfuscation phase this kind of
information may be deleted from the final package. Therefore,
the TamiFlex approach will not work, while StaDART is able
to process correctly this case due to dynamic API hooking.

More recently, reflection aware analysis of Android apps has
been the focus of some research publications. For example,
DroidRA uses string inference analysis to resolve reflective
calls and replaces them with regular Java calls by instru-
menting apps for further analysis [29]. However, DroidRA
cannot resolve the targets of reflection when the arguments to
reflection APIs are not readily availabe in the app. StaDART’s
dynamic element could prove fruitful in this regard. Ripple
uses a combination of formal analysis and pointer analysis to
ensure reflection aware static analysis in incomplete informa-
tion environment (IIE) [39]. Although Ripple resolves most
targets of reflection, various cases of IEE lead to high false
positives. In fact, Ripple in conjunction with StaDART could
prove beneficial for both where Ripple reducing the dynamic
analysis part of StaDART and StaDART reducing the false
positive rate of Ripple.
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X. CONCLUSION

Today mobile apps make an extensive use of dynamic
capabilities, namely reflection and dynamic class loading,
available in the Android OS. Being adopted from Java, these
techniques in Android incur an additional threat because the
loaded code receives the same privileges as the loading one.
Malicious apps can leverage these facilities to conceal their
malicious behavior from analyzers.

In this paper we presented StaDART, a technique that
interleaves static and dynamic analysis in order to scrutinize
Android apps in the presence of reflection and dynamic class
loading. Our approach makes it possible to expand the MCG of
an app by capturing additional modules loaded at runtime and
additional paths of execution concealed by reflection calls. In
order to produce the expanded call graph, StaDART relies on
code interposition based on a dynamic API hooking technique.
It does not require any modification to the Android framework
or the app itself. As observed from the evaluation results mal-
ware apps were more inclined to exhibit a suspicious increase
in dangerous permissions after dynamic loading of new code,
proving that StaDART is an effective hybrid approach able to
detect and capture apps’ dynamic capabilities used at runtime.

The results produced by StaDART can then be fed to the
state-of-the-art analyzers in order to improve their precision
(for instance, a reachability analysis will be more precise
over the expanded MCG than over the original one). Thus,
StaDART may help malware analysts by increasing their
ability to detect suspicious samples.

REFERENCES

[1] AndroGuard: Reverse engineering, malware and goodware analysis of
Android applications. Available Online. https://code.google.com/p/
androguard/.

[2] Android Studio – Support for Dynamic Delivery. https://developer.
android.com/studio/projects/dynamic-delivery.

[3] Andrototal - free service to scan suspicious apks against multiple mobile
antivirus. http://andrototal.org/.

[4] AppFigures. https://appfigures.com/.
[5] Avc undroid. http://undroid.av-comparatives.info/.
[6] Mobisec lab. http://www.mobiseclab.org/.
[7] Previously ds-andrototal - now droydseuss. http://droydseuss.necst.it/.
[8] Sanddroid - android app analysis tool. http://sanddroid.xjtu.edu.cn/.
[9] Virustotal - free online virus, malware and url scanner. https://www.

virustotal.com.
[10] M. Ahmad, B. Crispo, and T. Gebremichael. Empirical analysis on the

use of dynamic code updates in android and its security implications.
In Nordic Conference on Secure IT Systems, pages 119–134. Springer,
2016.

[11] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens. Drebin: Effective and explainable detection of android
malware in your pocket. In NDSS, 2014.

[12] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 259–269,
2014.

[13] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: Analyzing
the Android Permission Specification. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, pages 217–228,
2012.

[14] A. I. Aysan, F. Sakiz, and S. Sen. Analysis of dynamic code updating in
Android with security perspective. IET Information Security, 13(3):269–
277, 2018.

[15] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Automatically
Securing Permission-based Software by Reducing the Attack Surface:
An Application to Android. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, pages
274–277, 2012.

[16] D. G. Bobrow, R. P. Gabriel, and J. L. White. Object-oriented
programming. chapter CLOS in Context: The Shape of the Design
Space, pages 29–61. MIT Press, 1993.

[17] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini. Taming
Reflection: Aiding Static Analysis in the Presence of Reflection and
Custom Class Loaders. In Proceedings of the 33rd International
Conference on Software Engineering, pages 241–250, 2011.

[18] J. Bogda and A. Singh. Can a Shape Analysis Work at Run-time?
In Proceedings of the 2001 Symposium on JavaTM Virtual Machine
Research and Technology Symposium - Volume 1, pages 2–2, 2001.

[19] G. Canfora, F. Mercaldo, G. Moriano, and C. A. Visaggio. Composition-
malware: building android malware at run time. In Availability, Reliabil-
ity and Security (ARES), 2015 10th International Conference on, pages
318–326. IEEE, 2015.

[20] V. Costamagna and C. Zheng. Artdroid: A virtual-method hooking
framework on android art runtime. Proceedings of the 2016 Innovations
in Mobile Privacy and Security (IMPS), pages 24–32, 2016.

[21] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. TaintDroid: An Information-flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
pages 1–6, 2010.

[22] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
Permissions Demystified. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, pages 627–638, 2011.

[23] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. Scandroid: Automated
security certification of android. Technical report, 2009.

[24] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural Detection
of Android Malware Using Embedded Call Graphs. In Proceedings of
the 2013 ACM Workshop on Artificial Intelligence and Security, pages
45–54, 2013.

[25] M. Hirzel, D. von Dinklage, A. Diwan, and M. Hind. Fast Online Pointer
Analysis. ACM Transactions on Programming Languages and Systems,
29(2), 2007.

[26] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth. Slicing Droids:
Program Slicing for Smali Code. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing, pages 1844–1851, 2013.

[27] C. Hu and I. Neamtiu. Automating GUI Testing for Android Applica-
tions. In Proceedings of the 6th International Workshop on Automation
of Software Test, pages 77–83, 2011.

[28] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
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